
Origins & Evolution of the Universe
an introduction to cosmology — Fall 2018

Rychard Bouwens

Origins'&'Evolu.on'of'the'Universe'
an'introduc.on'to'cosmology'–'Fall'2016'

Henk'Hoekstra'&'Andrej'Dvornik'
hDp://www.strw.leidenuniv.nl/~hoekstra/TEACHING/OEU/OEU.html'Lecture 6: Thermal History, Early Universe



Layout of the Course

Sep 24:  Introduction and Friedmann Equations
Oct 1:   Fluid and Acceleration Equations
Oct 8:   Introductory GR, Space Time Metric, Proper Distance
Oct 15: Redshift, Horizons, Observable Distances
Oct 17: Problem Class #1
Oct 22: Observable Distances, Parameter Constraints
Oct 29:  Thermal History, Early Universe
Nov 5: Early Universe, Inflation
Nov 12: Inflation, Lepton Era
Nov 14: Problem Class #2
Nov 19: Big Bang Nucleosynthesis, Recombination
Nov 26: Introduction to Structure Formation
Dec 3: Cosmic Microwave Background Radiation (I)
Dec 5: Problem Class #3
Dec 10: Cosmic Microwave Background Radiation (II)
Dec 21: Final Exam



Expect to receive problem set 
#2 by mail by Wednesday

Due by Wednesday at 13:30
November 14



Review Last Week



“Question for Two Numbers”

In the early days of observational cosmology much emphasis was placed on 
geometric properties.

“Classical Cosmology”

Sandage:  “We need to determine H0 and q0”

deceleration parametera(t) = a(t0) +        (t-t0) +             (t-t0)2 + …
da
dt

   1   d2a
   2   dt2

t=t0 t=t0

=> a(t) = 1 + H0(t-t0) − (1/2)q0 H02 (t-t0)2

where q0 = −((d2a/dt)a / (da/dt)2)t=t0  = −((d2a/dt) / aH2)t=t0

Acceleration Equation

(d2a/dt2 )/a = −(4πG/3c2)Σw ρw (1+3w)
 =>   q0 = Ωm/2 + Ωr - ΩΛ 

dp(t0) = c(te-t0) + cH0/2 (t0 − te)2

dp(t0) = cz/H0(1 − (1+q0)z/2)

Proper distance is as follows:

Proper distances cannot be directly measured, so use other distances



One way to assign a distance is to use the luminosity

dL = (L/4πf)1/2
The “luminosity” distance is 

the proper distance in a 
static and Euclidean universeIf we consider a FRW metric

ds2 = −c2 dt2 + a2(t)[dr2 + Sk(r) (dθ2 + sin2θ dΦ2)]

Photons emitted at time te spread out over a sphere with radius 
dp(t0) = r and surface area Ap(t0):

If k > 0,  Ap(t0) < 4πr2

If k < 0,  Ap(t0) > 4πr2

Ap(t0) = 4πa2(t0)Sk2(r)
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Luminosity Distance 

Ansatz: the source<is located at the origin, the observer is 

located on the sphere with radius = distance :!

S0=4(R0
2r2!

The surface of the sphere is calculated for the time  t0  :!

Definition of the luminosity distance: !

Without the effect of the redshift and 

„thinning“ of the photons :!

1. Factor   (1+z)  due to the loss of energy by the redshift!

2. Factor   (1+z)   due to time dilation from  a(t)  to  a0!

bolometric flux !"

Sk(r)

emitter
observer

In addition to the geometric effects, the expansion of the universe causes the 
flux to be decreased by a factor (1+z)2

3/5/04 Chris Pearson :   Observational Cosmology 5: Observational Tools - ISAS -2004
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Observational Tools

5.1: Cosmological Distances5.1: Cosmological Distances
Luminosity Distance, DL

Integrating F(*) over all wavelengths gives Bolometric Flux {Wm-2} 
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• Photons arrive less frequently at observer than when they were emitted from the source

(1+z)

2 factors of (1+z) from expanding Universe
(1+z)

• Photons lose energy as they travel from source to observer

(Observable = Flux & Luminosity) Used to measure the distance to bright objects (Observable = Flux & Luminosity) Used to measure the distance to bright objects 

In Magnitudes:

! 

m "M = 5lgDL ,Mpc +25

(1)effect of redshifting on energy of photons
(2) time delay between photons

f = L/(4πa2(t0)Sk2(r)(1+z)2)Thus,

dL= a(t0)Sk(r) (1+z)



Another way to assign a distance is to use the angular size dθ
dθ = L / dA 

since more distant objects 
are smaller in general!

H. Böhringer 28 

Luminosity Distance 

Ansatz: the source<is located at the origin, the observer is 

located on the sphere with radius = distance :!

S0=4(R0
2r2!

The surface of the sphere is calculated for the time  t0  :!

Definition of the luminosity distance: !

Without the effect of the redshift and 

„thinning“ of the photons :!

1. Factor   (1+z)  due to the loss of energy by the redshift!

2. Factor   (1+z)   due to time dilation from  a(t)  to  a0!

bolometric flux !"

Sk(r)
observer (r=0)

emitter

L
dθ

Consider FRW metric again where the 
coordinates of the emitter are as 

follows:

one side of emitter: (r, θ1, Φ) 
other side of emitter: (r, θ2, Φ) 

dθ = ⎮θ1 − θ2⎮

Angle subtended by the distant source is set when the source emits 
its light:

ds = a(te)Sk(r) dθ = L
(a(t0)/(1+z))Sk(r) dθ = a(t0)Sk(r)dθ / (1+z)

dA = a(t0)Sk(r) / (1+z)



Comparison of Luminosity Distance with Angular Diameter
Distance Yields the Following:

dA = a(t0)Sk(r) / (1+z)dL= a(t0)Sk(r) (1+z)

dA = dL /(1+z)2

For small z << 1,

dA = (c/H0)z (1 + (−q0−3)z/2)

dL = (c/H0)z (1 + (−q0+1)z/2)

For large z →∞,

dL = z dHor (t0)

dA = dHor (t0) / z

Note that while dP (z1,z2) = dp(0,z2)  − dp(0,z1)

but  dA (z1,z2) ≠ dA(0,z2)  − dA(0,z1)



Another way to assign a distance is to use the measured 
proper motion dθ/dt:

dM = (dL/dt0) / (dθ/dt0)

H. Böhringer 28 

Luminosity Distance 

Ansatz: the source<is located at the origin, the observer is 

located on the sphere with radius = distance :!

S0=4(R0
2r2!

The surface of the sphere is calculated for the time  t0  :!

Definition of the luminosity distance: !

Without the effect of the redshift and 

„thinning“ of the photons :!

1. Factor   (1+z)  due to the loss of energy by the redshift!

2. Factor   (1+z)   due to time dilation from  a(t)  to  a0!

bolometric flux !"

Sk(r)
observer (r=0)

emitter

L
dθ

Angle traversed by the distant source 
is set when the source emits its light:

(a(te)Sk(r) dθ/dt) dt0 = L

(a(t0)Sk(r)(dθ/dte) / (1+z))dt0 = L

a(t0)Sk(r)dθ = L

dM = a(t0)Sk(r) = dL / (1+z) = dA (1+z)

Thus,



Luminosity Distance - Redshift Relation

Luminosity 
Distance

Two different ways of increasing 
the luminosity distance:
  1) Increase ΩΛ
  2) Decrease Ωm

Ωm = 0.2, 
ΩΛ = 0.8

Ωm = 0.2, 
ΩΛ = 0.0

Ωm = 1.0, 
ΩΛ = 0.0



DistancePredshiQ'rela.ons…'

Credit:'Ned'Wright'

…'depend'on'cosmological'parameters!'

“Light Travel Time”

Proper Distance

http://www.astro.ucla.edu/~wright/cosmo_02.htmlight travel time distance = c x age of universe



What are the measured densities in various components of the 
universe?

What is Ωmat?    (density of normal matter relative to critical)

0.31

Dark matter component

Baryonic matter componentΩmat,bary = 0.04

0.27

Yields of Helium allow this to be measured 
+ from acoustic oscillations in CMB

Measurable from bulk flows / peculiar
velocities / and from CMB

What is Ωrad?    (energy density of radiations relative to critical)

0.0001 Measurable from temperature of
CMB (since it has a black body spectrum)

What is ΩΛ?    (energy density of radiations relative to critical)

0.69
Measurable from luminosity distances to 

SNe



The relation between distance, Hubble constant, and density parameters 
can be seen by writing the first of Friedmann’s equations as follows:

1 − Ω (t) = H0 (1 − Ω0)/(H(t)a(t))2

At early times, one can show the following:
1 − Ω (t) = H0 (1 − Ω0)a2/(Ωr,0  − aΩm,0)

during radiation domination ⎮1 − Ω (t)⎮ ∝ a2  ∝ t
during matter domination ⎮1 − Ω (t)⎮ ∝ a  ∝ t2/3

deviation grows with time

if Ω−1 ~ small now, then ⎮1−Ω⎮ ~ 10−60  at very early times
as this suggests fine tuning, this is the flatness problem

H(t)2 = (8πG/3c2)ε(t) − κc2/(R02 a2(t))

Dividing by H2(t) and realizing that (8πG/3H2(t))(ε(t)/c2) = Ω(t)

1 − Ω(t) = −κc2/(R02 a2(t)H2(t))

Manipulating this expression, one can show

The Flatness Problem



New Material for This Week



The'hot'big'bang'

The'Universe'started'in'a'very'hot'phase'
'
P  It'acted'as'a'nuclear'reactor'(for'the'first'10P20'minutes)'
P  elementary'par.cle'‘alfabet'soup’'(even'earlier)'

'
This'Big$Bang$nucleosynthesis$can'give'strong'constraints'on'the'
density'of'protons'in'the'early'universe'and'be'used'to'test'our'
understanding'of'high'energy'par.cle'physics.'

Evolu.on'of'temperature'

As'!(z)≈0'the'temperature'increases'as'T�(1+z).'Note'that'also'T3/ϱ'remains'

constant'⟹'σ
rad
'remains'large.'

'

Further'back'in'.me,'the'maDer'becomes'rela.vis.c'and'the'total'equa.ondofd

state'becomes'w=1/3:'T�(1+z)'

'

The'temperature'keeps'rising'to'higher'and'higher'temperatures.'

Hot$Big$Bang!$



Cosmic'Microwave'Background'

There'was'a'.me'where'the'Universe'was'so'hot'that'

all' the' hydrogen' was' ionized.' Photons' and' plasma'

were'.ghtly'coupled'due'to'frequent'interac.ons.'

'

As' the' temperature' dropped' the' protons' and'

electrons' combined' into' neutral' hydrogen' and'

decoupled' from' the' photons:' the' Universe' became'

neutral'and'transparant.'This'occurred'at'z
rec
≈1100.'

'

This'is'called'recombina*on.'Note'that'the'Universe'is'
currently'ionized'again…'
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'

As' the' temperature' dropped' the' protons' and'

electrons' combined' into' neutral' hydrogen' and'

decoupled' from' the' photons:' the' Universe' became'

neutral'and'transparant.'This'occurred'at'z
rec
≈1100.'

'

This'is'called'recombina*on.'Note'that'the'Universe'is'
currently'ionized'again…'



(z > 1100)
< 380,000 years

(z < 1100)

> 380,000 years

Temperature 
> 3600 K

Temperature 
< 3600 K

Hydrogen neutral

Almost no free electrons

Photons unbound from 
plasma

Hydrogen ionized

Photons Thomson-scattering 
off of the ionized hydrogen 

Recombination Epoch (z~1100)

Ionized Plasma Neutral Gas

photon



Cosmic'Microwave'Background'

In'1964'Penzias'&'Wilson'detected'radio'noise'that'came'from'
all'direc.ons.'This'discovery'made'cosmology'a'genuine'
science'topic!'It'has'developed'into'the'prime'tool'for'
precision'cosmology'and'the'measurements'keep'improving'.'



Perfect'Black'Body?'

The'CMBR'emission'peaks'in'mmXwave'part'of'spectrum'and'is'(s.ll)'the'
most'precisely'measured''perfect'black'body'with'T'='2.72548±0.00057'K.'



We already discussed how the energy density in the CMB 
blackbody radiation is as follows:

εrad = αTrad4 α = π2 kB4 / (15ℏ3 c3)

Given that ρR ∝ a−4,  it would seem that T ∝ a−1

If the temperature is changing then the thermal distribution 
must change as well:

ε(ν) = (8πh/c3)ν3dν/(ehν/KT − 1)

If we scale ν ∝ 1/a, this expression retains its black body form 
with T∝ 1/a.

Therefore, as long as early stage interactions were frequent 
enough to set up a black body energy distribution, it will persist  

to later times when interactions become less frequent.   

How does the temperature of the CMB evolve with time?



Note that the temperature evolution of matter and radiation is different.   We 
already see see that εrad ∝T4 and T ∝(1+z).

This can also be seen by considering adiabatic expansion TVΥ−1 = constant
For relativistic gas Υ = 4/3 (and V ∝ a3) => T∝1/a ∝(1+z)

For relativistic gas Υ = 5/3 => T∝1/a2 ∝(1+z)2

Back in time the matter temperature rises faster than the radiation temperature 
until td when matter and radiation were coupled.  Before td, the temperatures 

are equal by thermal interactions (Thomson scattering).

How does the temperature of the CMB evolve with time?

Thomson'scaDering'
Photons'and'charged'par.cles'in'a'plasma'interact.'The'dominant'process'
is'the''elas.c'scaDering'of'radia.on'by'a'charged'par.cle.'At'low'energies'
this'is'called'Thomson'scaDering.'

The'cross'sec.on'is'independent'of'wavelength'and'largest'for'electrons.'



After td, the matter density evolves as (1+z)3 and the radiation density as 
(1+z)4

Before td, they evolve as (1+z)4+ε, where ε(z) is due to the exchange of 
energy with matter

Adiabatic gas + radiation in a coming volume evokes with dE + pdV = 0 (no 
heat flow):

d[(ρmc2 + 3ρmkT/2mp + σrT4)a3] = −(ρmkT/mp + σrT4/3) d(a3)

we assume that the matter component has the 
equation of state of a perfect gas P = ρmkT/mp and 
ρma3 = constant because of mass conservation

If we define σrad = 4mp σr T3 / 3kρm (entropy per baryon), one can show that

dT/T = −(1+ σrad)/(1/2 + σrad) (da/a)

Because σrad depends on the unknown T(a), we cannot integrate this analytically

ε(z) is small due to the high photon-to-baryon ratio



In the case that σrad is large (as we will show is the case), dT/T ≈ −da/a

⇒ ε≈ 0 because of the large 1/η

At higher temperatures, matter also becomes relativistic and the total 
equation of state w~1/3 and T ∝ (1+z)

the temperature keeps rising 
towards early time

If we interpret T as Trad, then σrad(T) does not depend on the scale factor a

σrad(t0) = 4mpσrT3/3kBρm,0 ≈3.6/η0

where η0−1 = nΥ,0/nb,0







What is the current density of photons in the universe from 
the CMB?

εrad(t0) = 4.2 x 10−14 J m−3 Mean Energy = 3 kBT  = 7.05 x 10−4 eV

⇒ ηΥ = 3.7 x 108 / m3

It is interesting to compare this to the # density of baryons 
in the universe:

Ωb = 0.02 h−2 ~ 0.04

It is interesting to compare this to the # density of baryons 
in the universe:

εbar = ρbar c2 = Ωb ρcrit c2  ~ 3.4 x 10−11 J / m3

The rest-mass of a proton ~ 939 MeV np = 0.22 / m3

photon / baryon ~ 1.7 x 109 (this needs to be explained!)



Entropy per Baryon

The high value of σrad ensures that the temperature and density of the radiation evolve 
as a pure radiation universe.

σrad is actually related to the entropy of the radiation per unit volume.

Sr = (ρradc2 + Prad)/T = (4/3)ρradc2 /T = (4/3)σr T3

σrad = Sr/kBnb where nb = ρm / mp number density of 
baryons

as ρradc2 = σrT4
and η−1 = nΥ/nb σrad = 3.6η−1

σrad is also proportional to the ratio of the heat capacities C of radiation and plasma:

radiation ρradCrad = dE/dT = 4σr T3 (per unit volume)

plasma ρmCm = dE/dT = 3/2 ρkB/mp (per unit volume)

(ρradCrad)/(ρmCm) = 2σrad radiation dominates the heat budget during matter-
radiation coupling 

How large is σrad, i.e., the entropy per baryon?

which is a very large number as Ωb ~ 0.04

σrad(t0) = 4mpσrT3/3kBρm,0 ≈3.6/η0 ≈ 1.35 x 108 (Ωb,0 h2)-1



Baryon asymmetry

Why is there now mostly matter, no anti-matter?

During the hadron era, there must have been many proton-anti-proton pairs; these 
annihilate as the universe cools, but a small residual of matter remained.

The asymmetry is very small : for every 109 anti-baryons, there are 
109 + 1 baryons.   Or σrad is large because the asymmetry is so small.

(ηb − ηb)a3 remains constant because baryon number is conserved below 
T ~ 1015 GeV.  

(ηb − ηb)/(ηb + ηb) ≈ (ηb − ηb)/2ηΥ ≈ ηb,0/2ηΥ,0 ∝ 1/σrad

Above the GUT temperature: ηb ~ ηb ~ ηΥ ~ T3

What is the baryon asymmetry and can we relate it to σrad?



Matter or radiation dominated universes decelerate → we expect a finite age for 
the universe.

at t = 0, the density diverges and the proper distance between points goes to 0.  
This singularity is called the “Big Bang.”

It is a consequence of the cosmological principle
Einstein’s equations in a cosmological context.
the expansion of the universe da/dt/a > 0
assumed form of the equation of state 0 < w < 1

Current observations show that Λ < (H0/c)2 ~ 10−55 cm-2

too small to be relevant in the early universe

If the dynamics of the early universe are dominated by a homogeneous and 
isotropic scalar field then it may have been important early on

Singularity



If the dynamics of the early universe are dominated by a homogeneous and 
isotropic scalar field then it may have been important early on.

Such a field has a Lagrangian L = (1/2)(dΦ/dt)2  − V(Φ)
kinetic term effective 

potential

One can define the effective density and pressure (it is not a fluid) as

ρΦc2 = (1/2)(dΦ/dt)2  + V(Φ) PΦ = (1/2)(dΦ/dt)2 − V(Φ)

If the kinetic term is negligible compared to the potential term, then

PΦ = −ρΦc2 

It behaves like a fluid with w = −1 (thus violating the strong energy condition) or
as an effective cosmological constant Λ = (8πG/c2)ρΦ

This could happen in a false vacuum at T > 1012 K when quantum effects become 
important

Whether or not the singularity can be avoided is an open question: we do not 
understand the origin of the Universe.

Singularity



There is a fundamental limit in our understanding of physics when quantum 
mechanical effects and strong gravity occur on the same scale.   We do not have a 

theory of quantum gravity.

When does this occur?

We have to define a Compton time for a body of mass m (or energy mc2) to be

tc = ℏ/mc2 this represents the time to violate
energy conservation by ΔE = mc2

The corresponding Compton length is lc = ctc = ℏ/mc

Note that tc and lc increase as the mass decreases: these scales indicate when 
quantum mechanics is important

The Schwarzschild radius is ls = 2GM/c2 and time ts = ls/c = 2GM/c3

We need quantum gravity when ls = lc => m = (ℏc/2G)1/2 ≈ (ℏc/G)1/2 ≡ mp

where mp is the Planck mass

Planck Scale



Our definition of the unit of time is arbitrary, but it is possible to derive a time that 
is “natural” on which everybody in the Universe agrees: there is a unique 

combination of fundamental constants that yields a time:

tp = (ℏG/c5) ~ 10−43 s the Planck time

Similarly we can define lp = ctp = (Gℏ/c3)1/2 ~ 1.7 x 10−35 m the Planck length

mp = (ℏc/G)1/2 ~ 2.5 x 10−8 kg the Planck mass

Ep = mpc2 = (ℏc5/G)1/2 ~ 1.2 x 1019 GeV the Planck Energy

Tp = Ep/kB = (ℏc5/kB2G)1/2  ~ 1.4 x 1034 K the Planck 
Temperature

The first tp ~ 10−43 seconds cannot be described by GR or quantum mechanics.

The horizon ctp ~ Planck length and particle pairs are created which have the 
Planck mass separated by less than the Planck length → particles/black holes at 

once, with quantum effects on the scale of the horizon → we cannot describe this 
with known physics.

Planck Scale



Experimental'constraints'

Good to keep in mind that
1 eV = 1.6 x 10-19 J = kB(1.16 x 104 K)



Is the Early Universe In Thermal Equilibrium?

We can assume that after the Planck time: T(t) = Tp a(tp)/a(t)
⟹ early on all particles are relativistic!

What is the equilibrium number density of a particle species i?

This depends on whether it is a fermion or a boson, and how many 
spin or helicity states it possesses, gi

The number density is given by

ni = gi (kBT/ℏc)3   ∫ x2dx / (ex ± 1)
0

∞
= (    )(gi/π2)ζ(3) (kBT/ℏc)3

3/4
1

(+ for fermions and −1 for bosons) boson

fermion

Riemann ζ function

ζ(3) ~ 1.202

The energy density is given by

ρi(T)c2 = (gi kB4T4)/(2π2ℏ3c3)  ∫ x3dx / (ex±1)
0

∞
= (    )(gi/2)σr T41

7/8

We need to look at the collision time scale τcoll

and compare this with the Hubble time τH (~age of universe)? 

To calculate the collision time, we need to know the temperature and 
density.



Is the Early Universe In Thermal Equilibrium?
the total energy density is 

ρi(T)c2 = (ΣB giB + (7/8)ΣF giF )σr T4/2 = g*(T)σr T4/2
effective degrees of freedom:

g*(T) < 200 or so

To get the total energy density one should add particles that have decoupled and are 
no longer in thermal equilibrium, or no longer relativistic; but this is negligible in the 

early universe

The cross section of all particles:

σ = α2(ℏc/kBT)2 α = 1/50

The collision time is

τcoll = 1/(nσc) = ℏ/(g*(T)α2kBT)

The average separation between particles is d = [g*(T)nB]−1/3 ~ nB−1/3 ~ ℏc/kBT



Is the Early Universe In Thermal Equilibrium?

The collision time is
τcoll = 1/nσc = ℏ/(g*(T)α2kBT)

This can be compared to the expansion time scale τH = a/(da/dt)

τH = 2t = (3/32Gπρ)1/2 = (0.3ℏTp/(g*(T)1/2kBT2)
= (2.42 x 10-6) (T/GeV)−2/(g*(T))1/2 s

τcoll/τH ~ (1/g*)1/2 α2 (T/Tp) << 1

==> Thermal Equilibrium



Era'of'phase'transi.ons'
Phase'transi.ons:'rearrangement'of'the'microphysics'
in'which'a'par.cular'symmetry'is'created'or'destroyed.'
'
c  loca.on'of'par.cles:'freezing,'mel.ng,'evapora.on'
c  orienta.on'of'par.cles:'ferromagne.sm'

F=UcT×S'

Example'of'first'order'transi.on'

internal 
energy

entropy

temperature

At high T, an increase in entropy leads to decrease in free energy.  After the phase transition 
there is spontaneous symmetry breaking and the system has to choose a new state

Era'of'phase'transi.ons'
Phase'transi.ons:'rearrangement'of'the'microphysics'
in'which'a'par.cular'symmetry'is'created'or'destroyed.'
'
c  loca.on'of'par.cles:'freezing,'mel.ng,'evapora.on'
c  orienta.on'of'par.cles:'ferromagne.sm'

F=UcT×S'

Example'of'first'order'transi.on'

internal 
energy

entropy

temperature



Kibble mechanism

Phase transitions can leave defects if different regions 
pick a different state.

After each phase transition, the effective physics changes.

Kibble mechanism:  different Horizon-sized volumes 
choose their ground states independently (no causal 

connections between them).

As the universe expands and cools, the fields decay to 
their ground state over most of space, but trapped 

energy domains remain as defects: this is a generic 
prediction!



Topological'defects'
Monopole&(point&defect):'defects'that'form'when'a'spherical'
symmetry'is'broken,'are'predicted'to'have'magne.c'charge.'
'
Cosmic&string&(line&defect):&onecdimensional'lines'that'form'
when'an'axial'or'cylindrical'symmetry'is'broken'
'
Domain&wall&(surface&defect):'twocdimensional'membranes'
that'form'when'a'discrete'symmetry'is'broken'at'a'phase'
transi.on.''
'
Textures&(higher&dimensional&defects):'form'when'larger,'
more'complicated'symmetries'are'completely'broken.'They'
are'not'as'localized'as'the'other'defects,'and'are'unstable.'
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Topological'defects'

monopole' string' domain'wall'

From:'Coles'&'Lucchin'(2002)'



Effect'of'a'cosmic'string'
Cosmic'strings'split'images'c'angle'of'splitng'
propor.onal'to'mass/unit'length.'
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Phase'transi.ons'of'the'Universe'
Between'T≈1019'and'1015'GeV,'quantum'gravity'effects'decrease'in'
importance'and'interac.ons'are'described'by'a'GUT.'Baryon'number'is'
not'conserved'in'GUTs,'so'no'asymmetry'between'maDer'and'an.maDer.'
'
Near'T≈1015'GeV'(t=10c37s)'the'GUT'symmetry'breaks'leading'into'the'
situa.on'described'by'the'standard'model'of'par.cles;'the'GUT'phase'
transi.on'typically'results'in'the'forma.on'of'magne.c'monopoles.''
'
For'typical'GUTs:''
c'par.cle'mass:'mM≈1016GeV''
c'number'density:'nM>10c10nƔ.''
'
⟹'Ωmonopole>mM/mpΩbar≈'1016.'
'
This'does'not'match'observa.ons:'the&monopole&problem&
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Phase'transi.ons'of'the'Universe'

A'GUT'that'unifies'the'elektroweak'interac.ons'with'the'strong'
interac.ons'puts'leptons'and'hadrons'on'the'same'foo.ng'and'thus'
allows'processes'that'do'not'conserve'baryon'number:'source'of'maDer/
an.cmaDer'asymmetry.'
'
As'the'temperature'falls'below'TGUT≈1015'GeV'the'unifica.on'of'the'strong'
and'elektroweak'interac.ons'no'longer'holds.'Towards'the'end'of'this'
period'(10c11s)'the'Universe'is'filled'with'an'ideal'gas'of'leptons'and'
an.leptons,'the'four'vector'bosons,'quarks'and'an.cquarks.'
'
The'horizon'is'1cm'and'contains'≈1019'par.cles!''
&
&
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Phase'transi.ons'of'the'Universe'

At'TEW≈100'GeV'elektrocweak'symmetry'is'broken'and'we'have'separate'
elektromagne.c'and'weak'forces.'All'the'leptons'acquire'mass.'
'
When'the'temperature'drops'to''TQH≈200c300'MeV'(10c5s)'we'have'the'
final'phase'transi.on'and'the'strong'interac.on'leads'to'the'confinement'
of'quarks'into'hadrons:'the'quarkchadron'phase''
'
'
The'horizon'is'1km'in'size'
&
&
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Successes'of'the'Big'Bang'model'

c  Correctly'predicts'the'abundances'of'light'elements'

c  Explains'the'CMB'as'relic'of'the'hot'ini.al'phase'

c  Naturally'accounts'for'the'expansion'of'the'Universe'

c  Provides'a'framework'to'understand'the'forma.on'of'cosmic'
structure.'

There%are%also%several%problems%(some%of%which%can%be%addressed%
by%incorpora6ng%“new%physics”)%
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Problems'with'the'Big'Bang'model'

c  Origin'of'the'Universe'
c  The'horizon'problem'
c  The'flatness'problem'
c  Origin'of'the'baryon'asymmetry'
c  Monopole'problem'
c  Origin'of'primordial'density'fluctua.ons'
c  Nature'of'dark'maDer'
c  Nature'of'dark'energy'
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How we can solve these issues with the Big Bang model?

Consider the horizon problem…

As the universe ages, we are continually probing regions of the universe 
which were not yet in casual contact, but appear to be homogeneous.

In the lecture on horizons, we showed the size of the particle horizon in 
comoving coordinates evolves as a3/2/a ~ a1/2.

We need to propagate information within a casually connected volume to 
great comoving distances, i.e., for the particle horizon to be plausibly

infinite.

If the scale factor tends to 0 at early times as tβ then the particle horizon 
at time t:

RH(t) = a(t) ∫cdt’/a(t')
0

t

This integral diverges if β >= 1



d2a/dt2 = −(4/3)πG(ρ+3P/c2)a = β(β−1)a/t2

−(4/3)πG(ρ+3P/c2)t2  = β(β−1) ∝ d2a/dt2

But if not, there is a particle horizon and the universe will not be in casual 
contact.  is is hard to reconcile with the cosmological principle.

What does β >= 1 imply regarding other quantities of importance?

What does this imply regarding d2a/dt2?

Use Friedmann’s second equation:

If β >= 1, then d2a/dt2 > 0

−(4/3)πGρ(1+3w)t2  = β(β−1) ∝ d2a/dt2

If there is no particle horizon, then information from a small region can 
propagate to the entire universe.

If w <= −1/3⟺⟺  d2a/dt2 >= 0 ⟺ there is no particle horizon β >= 1



Propagating Information from Small Region to Large Volume in 
Universe (Inflation)

We need to a mechanism to disconnect regions that were before in causal contact, 
the expansion must be so rapid that there exists an event horizon at a finite 

distance from any point

implies (d/dt)(c/(da/dt)) < 0 =>  (d2a/dt2) > 0

given the acceleration equation we need a substance with sufficient negative pressure.

The inflation field; in physics we encounter scalar fields to describe the potential 
energy with a particular force; the force is the gradient of the potential energy scalar 
field.  Other examples are the temperature or pressure field.  In quantum field theory 

a scalar field is associated with a spin-0 particles.  The Higgs field is an example.

The Hubble radius in comoving coordinates must shrink with time:

d/dt ((1/a) (c/H)) < 0 where H = (da/dt)/a

distance light can
travel in Hubble time

scale factor to
put in comoving 

coordinates

How can we formalize this?

How can we implement this?



Infla.on'

Dodelson'(2003)'

H ~ constant
scales as 1/a

a ∝ e(Λ/3)t

Infla.on'

Dodelson'(2003)'

H ~ constant
scales as 1/a

scales as a(c/Ha)

Hubble 
Radius

in comoving 
coordinates



Let’s take as an apology the following situation:

T
im

e

At time t = 0, members of this class - 
chat with other about initial 

conditions (IC)

Rapid period of Inflation - Each of us fall out of casual 
contact with the others in the class, but know about IC 

from discussion at beginning 

As expansion slows and we come into casual contact 
with each other again, we see that we all have the same 

ICs.



Inflation

Imagine the early universe was filled with a scalar field Φ(x,0) = Φ0 >0, i.e., not in 
the ground state.

In this case, it may lead to accelerated expansion; after a while the field decays into 
particles (causing reheating)

The Lagrangian of a scalar field is L = -(1/2)c2(∂µΦ)(∂µΦ)  − V(Φ)

To get PΦ < −ρΦc2/3 

ρΦc2 = (1/2)(dΦ/dt)2  + V(Φ)

PΦ = (1/2)(dΦ/dt)2 − V(Φ)

If we assume homogeneity and isotropy, we can define effective density and 
pressure:

(1/2)(dΦ/dt)2 − V(Φ) < −(1/3)((1/2)(dΦ/dt)2  + V(Φ))

==> (dΦ/dt)2 < V(Φ) slow roll condition


