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Layout of the Course

Sep 24: Introduction and Friedmann Equations
Oct |: Fluid and Acceleration Equations

Oct 8: Introductory GR, Space Time Metric, Proper Distance
Oct |5: Redshift, Horizons, Observable Distances

Oct |7: Problem Class #]|

Oct 29: Thermal History, Early Universe

Nov 5: Early Universe, Inflation

Nov 12: Inflation, Lepton Era

Nov 14: Problem Class #2

Nov 19: Big Bang Nucelosynthesis, Recombination
Nov 26: Introduction to Structure Formation

Dec 3: Cosmic Microwave Background Radiation (1)
Dec 5: Problem Class #3

Dec 10: Cosmic Microwave Background Radiation (ll)
Dec 21: Final Exam



Review Last Week



Proper Distance

Imagine we have a distant galaxy at (r, 8, )

(important to specify time since nominal
How far away is a distant galaxy? distance depends on when measurement
is made since expanding universe)

Take case that O, p are constant and only r is different

In the flat case (k=0),
Proper Distance: d,(t) = [ds

“Source-source distance measured based on current
topology of the universe and ignoring travel time”

ds? = a2(t) [dr2/(1-kr2) + r2(dO2 +sin20d?)]

In general case
8 ’ arcsin(k!2r)/k!72, if k>0

Proper Distance: dy(t) = a(t) § hif k=0

fi(r)

Not especially practical (since not measurable)!



Distances and Redshifts

We cannot measure proper distances, but we can measure redshifts.

Redshift — which we denote as z — is directly connected to the scale factor

of the universe. a(tr) = |
a(te) > >
/\/ Ae (142) = Ar /\/
Space a(te) = I/1+z
) Space
when
emitted” ‘when
received”

Redshift — which we denote as z — is directly connected to the scale factor
of the universe.

c dte/ a(te) = c dt-/ a(tr)
As such,  dt « a(t) implies time dilation
This implies  A\./Ae = a(tr)/a(te)
Since a(ts) = | and A/Ae = I+z, a(te) = I/1+z



How far can we see?

Light travels at a finite speed — no physical signals
travel faster!

Important connection to questions about how the
universe became so homogeneous...

Complicated since the universe is expanding!



Horizon Distance

Horizon Distance: The greatest distance one can in principle look —
probing back to when the universe had time t=0

dHor= ¢ f dt/a(t)

What is the proper distance to some galaxy which emitted its light at time te!

dp(to) = ¢ ttcc:)lt/a(t)= (c/Ho)(2/(1+3w))[| - (te/to)(I*3wW)/(B+3w)]

What is the proper distance to galaxy who emitted its light at time te with redshift z?

dp(z) = cto B(1+wW)/(1+3w))[I - (I+z)-(1+3w2] = (c/Ho)(2/(1+3w))[ I - (1+z)-(1+3w)2]

if w=0:  dp(z) = (2c/Ho)[I - (1+2)72] Blows up if w <= —1/3
What is the Horizon distance!
dHor(t) = (¢/Ho)(2/(1+3w)) which is finite if w > —=1/3
Horizon distance tells us the portion of the universe that is casually connected
w =0: dHor(t) = 2c/Ho = 3cto

If w <= —1/3, then whole universe is casually connected



Particle Horizon

A key question is which parts of the universe can influence or have
influenced each other, i.e., which parts are in casual contact.

Particle horizon: boundary of that part of the universe that could have
reached us in the age of the universe. At the present epoch, it is the observable universe.

What is this horizon to redshift z.?
dHor(Ze) = 3cto [| - (|+Ze)'|/2]
Ze
dHor(Ze) = (C/HO) dZ/( | +Z)/(Qo( | +Z) I+3w+( | -Qo))O.S

0
How did Proper Distance of Particle horizon change with time!?

it is proportional to t/tg t/to « (a/ag)32 «(1+z)-3/2
8x smaller at z~3, 30000x smaller at z~1000
How does this horizon change relative to the scale factor of the universe
(i.e. divide by 1/(1+z))
dhor (1+2) = (1+2)7172

Therefore, with the horizon, we potentially probe further and further in the regions
of the universe to which we have not been in casual contact



Horizon in flat Q =1 model

time

pper distance

scale as
t2/3

scale as
t



Horizon Problem

We receive light from galaxies or other sources which may not have been
able to communicate with each other, but appear to be completely
homogeneous in terms of their properties.

This is called the horizon problem.

Consider the universe where it was ~1 100 times smaller than it is today,
i.e.,, at z~1099.

What is the furthest distance that we could expect to be homogeneous
due to information propagating from a common source!

R 2 Dn(z=1099)
\
" What is the angular separation between two different points
on the sky that corresponds to this distance (at z~1099)?

2 D(z=1099) ~ Da(z=1099) 6

O ~ 3.6 degrees




Why is z~1 100 interesting?

It is when the intense background radiation field of photons decouples from
the baryons (i.e., neutral hydrogen atoms) and free streams into the universe.

This decoupling occurs due to the decreasing energy / temperature of
photons in the background field relative to that needed to ionize hydrogen.

After decoupling this background radiation continues to exist in the universe,
but its temperature falls in accordance with the expansion of the universe.

What is the temperature of this relic radiation if we look in all directions on
the sky? It is almost entirely homogeneous as we discussed before...

But if we look closely, there are fluctuations in the temperature but
they are small

fluctuations at |
part in 100000

How can this be, if casual contact is only possible at an angular separation of 3.6
degrees!



Horizon Problem

To resolve this issue, note that the integral f cdt / a(t) depends on the form
of a(t) at early times.

we need to change how a(t) scales at early time so that points in casual
contact at the earliest times, leave the horizon, and then reenter.

Need w < —1/3 accelerated expansion, i.e., inflation, which occurs when. We
saw that for w < —1/3, there is no particle horizon
(if a(t) maintains form to z = )



New Material for This VWeek



“Classical Cosmology” “Question for Two Numbers”

In the early days of observational cosmology much emphasis was placed on
geometric properties.
Sandage: “We need to determine Hoand qo”

/

deceleration parameter

(t-to)2 + ...
t=to

| d2a
2 dt?

(t-to) +
t=%to

da
a(t) = a(to) + o

divide by a(to)
a(t) = | + Ho(t-to) — (1/2)qgo Ho? (t-to)?
where qo= —((d%/dt)a / (da/dt)2)eo = —((d2a/dt) / aH)emo

Make use of acceleration equation:
(d2a/dt?)/a = —(411G/3)2w pw (1 +3w)



“Classical Cosmology” “Question for Two Numbers”

qo = —((d2a/dt)a / (da/dt)2)e=0 = —(1/H2)e=e0 (—(4TTG/3c2)Zw pw (1 +3W))
qo = (4TTG/3H2)Z,, pw (1+3W))
qo = (1/2)(8TTG/3H2) Z., pw (1+3w))
qo0 = (1/2Pcriticat) 2w Pw (1+3w))

qo = Qm/2 + Qr = Qp
Recall that the proper distance is
dp(to) = ¢ t;I(ic/ a(t)
If we substitute Taylor series expansions of |/a(t), one can show:
dp(to) = c(te-to) + cHo/2 (to - te)?

dp(to) = cz/Ho(l — (1+qo)z/2)

But the proper distance is not measurable



One way to assign a distance is to use the luminosity

The “luminosity” distance is
d.= (L/4Tl'f) 172 the proper distance in a
static and Euclidean universe

If we consider a FRW metric
ds2 = —c2 dt2 + a2(t)[dr2 + Si(r) d)2]
d0? + sin20 dP?2
photons emitted at time te spread out over a sphere with radius
dp(to) = r and surface area Ap(to):

In Euclidean space, Ay(to) = 4TT1dp(to)? = 4TTr2



One way to assign a distance is to use the luminosity

The “luminosity” distance is
dL = (L/4T1Tf)12 the proper distance in a
static and Euclidean universe

If we consider a FRW metric
ds2 = —c2 dt2 + a?(t)[dr2 + Si(r) dQ)?]
d0? + sin20 dP?2
photons emitted at time te spread out over a sphere with
radius dp(to) = r and surface area Ay(to):

) i . Light cone eminating
Example using a simple closed space time from source

Source

time



One way to assign a distance is to use the luminosity

The “luminosity” distance is
dL= (L/4Tl'f) 172 the proper distance in a
static and Euclidean universe

If we consider a FRW metric
ds2 = —c2 dt2 + a?(t)[dr2 + Si(r) dQ)?]
d0? + sin20 dP?2
photons emitted at time te spread out over a sphere with
radius dp(to) = r and surface area Ay(to):

Example using a simple closed space time Light cone eminating
. : . from source
(now showing expansion of universe)

time



What are dp(to) and Ap(to) for this example!?

Light cone eminating . G SO

from source | |

(i.e., where we
observe it)

In the general case,
dP(tO) = a(to)l" AP(tO) — 4Tl'a2(to)sk(l”)2 View from
above

. bolometric flux !
As in the above example,

fk>0, Si(F) <r — Ap(to) < 4TTr2

emi"t"Eer

In an open geometry:
lfk <0,Sk(r) >r — Ap(to) > 41112




In addition to the geometric effects, the expansion of the
universe causes the flux to be decreased by a factor (|+z)2

(I)effect of redshifting on energy of photons
(2) time delay between photons

2 factors of (1+z) from expanding Universe

W = AR AN

Thus, f = L/(411a2(t0)Si2(r) (1 +2)?)
di= a(to)Sk(r) (I1+2)



Another way to assign a distance is to use the angular size dO

_ since more distant objects
d9 =L/ da are smaller in general!

Example using a simple closed space time

Where it will be observed

Source

light observed

light emitted

Note angle maintained as universe expands!




Another way to assign a distance is to use the angular size dO

_ since more distant objects
d9 =1L/ da are smaller in general!

Example using a simple closed space time

Where it will be observed

Consider FRW metric again where the
coordinates of the emitter are as

Source follows:
one side of emitter: (r, 0, ®)
other side of emitter: (r, 02, )
do = | 01 - 92| View from above
What is d0? dO = L/ (a(te)Sk(r)) emiccer
'
observer

(=0)

da = a(te)Sk(r)
da = (a(to)/(1+z)) Sk(r)



Gravitational lensing

—n_ .
Source plane
I -
\\ angular diameter distances!
\. Dde
‘\‘_&\//
\ /

L /1 D A
W o. 1= —§&— Dase(§)
— |/ 1 Dy
Lens plane

'.B“

Observer



Another distance measure is a proper motion distance
dO/dt, i.e., angle on sky per unit time.

dw = (dL/dto) / (d6/dto)

As for angular diameter distance, angle on sky is determined by
when a source emits its light... but then there is time delay...

So
dm = da(to) (1+2z)

Overall, there is a nice relation between all 3 distance measures:

da=dm/ (I+z) =d./ (1+2)2



What happens to these distance measures in the limit of small
or large redshifts!?

For small z << |,
da = (c/Ho)z (I + (—qo—3)z/2)
dL= (c/Ho)z (I + (—qot+1)z/2)
For large z — o0,

dL = z dHor (to)
da = dHor (to) / z

Note that while dp (z1,22) = dp(0,z2) - dp(0,z1)
but da (z1,z2) # da(0,z2) - da(0,z))



Do the distance measurements depend on the values of the
cosmological parameters, i.e., (Qm or Qn?

Yes — In fact, we can use the dependence on the distance
measures on the cosmological parameters to “weight” the
universe

What are the dependencies!?



Luminosity Distance - Redshift Relation

N

Luminosity
Distance

Luminosity Distance D, /D,

5 I I I I

W
T T

N
T

0., =0.2,
Qa =0.87
7 Qm=10.2,
4 Qpr=0.0
1 Qm=1.0,
1 QA =0.0

Redshift z

Two different ways of increasing
the luminosity distance:

1) Increase Qa
2) Decrease Qn,




Angular Diameter Distance - Redshift Relation
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Distance ’

Qr=0.0
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Angular Diameter Distance D,/D,

Redshift z
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« Distance-redshift relations
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What are the measured densities in various components of the
universe!?



What are the measured densities in various components of the
universe!

What is Qmat! (density of normal matter relative to critical)

(O mat,bary = 0.04 Baryonic matter component

0.31 Yields of Helium allow this to be measured
+ from acoustic oscillations in CMB

0.27 Dark matter component

Measurable from bulk flows / peculiar
velocities / and from CMB



Evidence for Dark Matter
from the Observations of
Colliding Galaxy Clusters



Evidence for Dark Matter from Observations of
Colliding Clusters

First a few words to orient you a little more about what a
galaxy cluster is...

Galaxy clusters are regions of the universe that have
collapsed (due to gravity)

Approximate mass budget:
~2% galaxies
~13% in a very hot ionized gas

~85% in dark matter

Most of the baryons are in the
ionized gas!




Evidence from the Observations of Colliding Clusters

Cluster #1 Cluster #2

Reason it is useful
can be seen from
the following
“simulation’’:

-- ionized gas from the
colliding clusters “run into
each other” forming a shock

-- dark matter from the colliding clusters
pass right through each other

this presents us with a situation where the light (from baryons) and
mass (from dark matter) are in different places



Evidence from the Observations of Colliding Clusters

-- how can we use the observations
to see that baryons do not provide
most of the mass

-- x-ray light shows us where the
ionized gas (i.e., baryons) is

-- gravitational lensing shows us where
the mass is (mostly dark matter)

-- ionized gas from the colliding clusters
“run into each other” forming a shock

-- dark matter from the colliding clusters
pass right through each other

“BIIet Cluster” Clwe et al. 2006
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What are the measured densities in various components of the
universe!

What is Qmat! (density of normal matter relative to critical)

(O mat,bary = 0.04 Baryonic matter component

0.31 Yields of Helium allow this to be measured
+ from acoustic oscillations in CMB

0.27 Dark matter component

Measurable from bulk flows / peculiar
velocities / and from CMB

What is (Qrad? (energy density of radiations relative to critical)

0.000| Measurable from temperature of
. CMB (since it has a black body spectrum)



What are the measured densities in various components of the
universe!

What is Qmat! (density of normal matter relative to critical)

(O mat,bary = 0.04 Baryonic matter component

0.31 Yields of Helium allow this to be measured
+ from acoustic oscillations in CMB

0.27 Dark matter component

Measurable from bulk flows / peculiar
velocities / and from CMB

What is (Qrad? (energy density of radiations relative to critical)

0.000| Measurable from temperature of
. CMB (since it has a black body spectrum)

What is Qn!? (energy density of radiations relative to critical)

Measurable from luminosity distances to

0.69 SNe



What are the measured densities in various components of the

universe!

[1] Parameter [5] 2015F(CHM)  [6] 2015F(CHM) (P1ik)
1006y . . . .. . ... 1.04094 +0.00048 1.04086 + 0.00048
Quh%. ... ... .... 0.02225+0.00023 0.02222 + 0.00023
Q.h> . ... 0.1194 + 0.0022 0.1199 + 0.0022
Hy .. .......... 67.48 + 0.98 67.26 + 0.98
Mg oo e 0.9682 + 0.0062 0.9652 + 0.0062
Qo oo 0.313 £ 0.013 0.316 + 0.014
o B 0.829 + 0.015 0.830 + 0.015
T o 0.079 + 0.019 0.078 + 0.019
10°A¢7%7 . . . .. ... 1.875+0.014 1.881 + 0.014

Standard Model of cosmology

We start with the reviewing the status of observational
cosmology over the past century and how we arrived at the
current “standard model” of cosmology.
http://arxiv.org/abs/1502.01589




What are the measured densities in various components of the
universe!

Ingredients
(per Universe)

DE: 73%

CDM: 23%

H: 3%

He: 1%
neutrinos: 0.3%

Ene ~
pa'k Energ
i

Co\Sy  LER)

Daf\‘ ( olo !
Matt® oS

P ——— Y Y . & A D

EE—---——

Note: slightly different than Planck constraints



Importantly, what do the different densities add up to equal?

Qnt+ Q-+ QA= 1.000 £ 0.005

What does this imply regarding () ?

Q] < 0.005

Why might this be unexpected?! (and therefore it is important!)



The relation between the Hubble and density parameters can be seen
by writing the Friedmann equation as follows:

H(t)2 = (81T1G/3c?)€(t) — Kc2/(Ro? a%(t))
Dividing by H2(t) and realizing that (8TTG/3H2(t))(g(t)/c2) = Q(t)
| — Q(t) = —Kc2/(Ro2 a2(t)H2(t))
Manipulating this expression, one can show

| = Q (t) = Ho (I = Qo)/(H(t)a(t))>

How does this expression vary with a or t at early times!
| — Q (t) = Ho (I — Q0)a%/(Qro — aldm,)
during radiation domination ||l = Q (t)| « a2 « t
during matter domination || = Q (t)| «a « 23

deviation grows with time
if [I —Q | ~0.005now,then | 1-Q| ~ 10-62
as this suggests fine tuning, this is the flatness problem



