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Layout of the Course

Sep 24: Introduction and Friedmann Equations

Oct |: Fluid and Acceleration Equations

Oct 8: Introductory GR, Space Time Metric, Proper Distance
Oct | 7: Problem Class #l

Oct 22: Observable Distances, Parameter Constraints
Oct 29: Thermal History, Early Universe

Nov 5: Early Universe, Inflation

Nov 12: Inflation, Lepton Era

Nov |4: Problem Class #2

Nov 19: Big Bang Nucelosynthesis, Recombination
Nov 26: Introduction to Structure Formation

Dec 3: Cosmic Microwave Background Radiation (1)

Dec 5: Problem Class #3

Dec 10: Cosmic Microwave Background Radiation (ll)
Dec 21: Final Exam



You should have received
problem set #| by mail 1.5
weeks ago

Due by Wednesday |3:30
October 17,2018



First Problem Class,

This Wednesday, October 17,
at |3:30



Review Last Week



Introduction to Concepts Relevant to General Relativity

General Relativity based on the observation that the inertial and
gravitational masses are the same

Gravitational Force F=m, GM/r?
I the same

Impact of Force on Mass F=mia
Assume instead that mass curves space time such that test particles

naturally accelerate in a way independent of the mass of the test particle.
In GR, particles move along geodesics (shortest paths)

Space time described by metric g,v which gives distance ds between events
X = (t,%,Y,2) and X + dx = (t + dt,x +dx,y +dy,z + dz)

The geometric properties of the surface can be obtained by considering
the distance between a close of infinitesimally close points:

dI2= 2; gii(x) dxi dx

metric



Space Time

Space time is described by the distance between two events:
ds2 = c2 dt? - dx2 - dy? - dz2
= Nuv XM XY = c2dt2 - Oj xi xi
where (x9, x!, x2, x3) = (ct,Xx,¥,z) and N = diag(l,-1,-1,-1)
For a general space time: ds2 = g, dx* dxV

In general relativity, the curvature of space time is important:
particles move such that
0 f path ds = 0 the integral is stationary

In the x-frame, the equation of motion becomes
d2xt [ ds2 = —[vyp (dx®/ds)(dxP/ds)



Energy-Momentum Tensor, Newtonian Limit — Einstein’s Field Equation

For a particle of rest mass m, we can define a four momentum as
p* = mU¥, with Ur = cdxv/ds
T,v describes the matter distribution for a perfect fluid (no viscosity, heat flow, or stress)
with pressure P and energy density p

Tw= (P +pc)U,Uy - Pguy

One can express the curvature of space time so as to match accelerating particles
in a simple Newtonian potential and set it up so as to have the same form as
Poisson’s equation from Newtonian gravity, therefore setting up a relation between
curved space and the mass/energy density of the universe.

Einstein proposed the following expression to encapsulate curvature.
Guw =Ry —gwR

/- ™~

This tensor is‘the unique choice:
Gpv = 81TGTpv/ C4

Einstein’s Field Equation



Including A Cosmological Constant in Einstein’s Field Equation

It is possible to write a modified set of field equations that are consistent with the
conservation laws:

Gpv + /\gpv = (81TG/C4)T”V
™~ cosmological constant

This modification allows for a static universe

What is the physical meaning of /A\?
It is useful to move A to the right hand side: T = (~cN/BTIG)guy

Gyv = (8TIG/cH) (T oy + Tpu¥ac)

If we recall that T,v = (P + pc2)U, Uy — Pg,y, the A term can be included as
an ideal fluid with

p = -Plc2 = (-c2\/8TIG)



Curved Space Time

In general relativity, the metric is key, but which one describes the universe and
obeys the cosmological principle?

Curvature must be the same everywherel

Now curved space -
surface of sphere:

Flat 2D spaces

Credt, ey )

Area of Triangle

x + f + Y =17 (in radians) O(+B+Y=TI'+A‘/:2

we know that ds2? = dx2 + dy?2 ~
Radius of

Sphere
x + B + Y > T1: positively curved

Curvature is homogenous + isotropic
Note maximum distance between

Volume of 41TR2 points of TIR

Similarly we can
define for negatively
curved space

f ¢ J.,-&’{TM e

,',«.,d:_...«_;'(\' A ho 2[;, J,J,w,,.‘(_ll o
x+pf+Y=1-A/R2

x+B+Y<Tr
negatively curved

Infinite Volume + No
Maximum Distances



General Curved Space Time:

Flat Space Time: ds2 = dx2 + dy? + dz2
ds?2 = dr2 + r2(d0? + sin20 d?)
Positively Curved:  ds2 = dr2 + R2sin2(r/R) (dO2? + sin20 dp2)

Negatively Curved: ~ ds2 = dr2 + R2sinh2(r/R)(d02 + sin20 dy?)

All these metrics have constant curvature:
ds?2 = dr? + S(r) (dO2 + sin20 d?)
where
R sin(r/R), if k =+1
S(r) = h ifk=0
R sinh(r/R), if k =—1
If we change coordinate system such that x = S(r) and replace x with r,
ds?2 = dr?/(1+kr2) + r2 (dO2 + sin20 dp?)

This is the most general spatial metric with constant curvature. The only change
we need to make is to allow space to expand:

ds? = — c2dt2 + a2(t) [dr2/(1+kr2) + r2 (dB2 + sin20 dp2)]



New Material for This VWeek



Proper Distance

Imagine we have a distant galaxy at (r, 8, )

(important to specify time since nominal
How far away is a distant galaxy? distance depends on when measurement
is made since expanding universe)

Take case that 0, ¢ are constant and only r is different

In the flat case (k=0),

Proper Distance: dy(t) = [ds

“Source-source distance measured based on current R P
topology of the universe and ignoring travel time” '

-~
I
]
1
1

X

AN

ds? = a2(t) [dr2/(1-kr2) + r2(dO? +sin20dp2)]

”
In general case, arcsin(k'2r)/k!’2, if k>0
Proper Distance: dp(t) = a(t)§ hif k=0
arcsinh((—k)!'2r)/(—k)!/2, if k<O

fi(r)

Not especially practical (since not measurable)!



Distances and Redshifts
We cannot measure proper distances, but we can measure redshifts.

Redshift — which we denote as z — is directly connected to the scale factor
of the universe.

a(ty) = |
a(te) < ( ) >
Space a(te) = 1/1+z
‘ Space
when
emitted” “‘when
received”

Redshift — which we denote as z — is directly connected to the scale factor
of the universe.



Distances and Redshifts

Now let us to demonstrate how redshift relates to scale factor using the metric.

(Again take the case that 0, ¢p are constant and only r is different)
Since light travels on geodesics,ds = 0 and so

cdt/a(t) =dr/ (I — kr?)0>
Consider the crest of a wave and consider it traveling from coordinate r = 0 to robs:

obs t-

fdr/(l — kr2)05 = f c dt/ a(t)
0

te

It will make this trip from some time the te some later time t;

Imagine some short time later... te + dte, tr + dt. that the next wavefront moves
between the same coordinates

Fobs tr+dt,
f dr/ (I — kr2)05 = c dt/ a(t) = above expression
0 te+dte
We can subtract .
tetdte tr+dt,

c dt/ a(t) :>fcdt/a(t)= c dt/ a(t)

from both tetdte . t



Distances and Redshifts

We can subtract
te+dte tr+dtr

f c dt/a(t) =>f c dt/a(t) = f c dt/ a(t)
from both  te*dt te tr
: C dte/ a(te) - C dtr/ a(tr)

As such,  dt = a(t) implies time dilation

Since the delta interval correspond to different crests of a wave,

A « dt « a(t)
This implies
A/ e = a(tr)/a(te)
Since a(tr) = | and A/Ae = | +z,

a(te) = I/1+z



from lecture 3

Observation of time dilation
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from lecture 3

Interpretation of redshift

2.5 T
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Redshift z

Supernovae at greater redshifts are seen to take longer to decay: it
scales linearly with the redshift: the redshifts are true reflections of

Doppler shift.



How far can we see?

Light travels at a finite speed — no physical signals
travel faster!

Complicated since the universe is expanding!



Horizon Distance

Horizon Distance: The greatest distance one can in principle look —
probing back to when the universe had time t=0

dHor —C f dt/a(t)

Let’s first derive an expression for proper distance to a galaxy for a single
component universe with equation of state parameter w:

How does a(t) evolve for an arbitrary value of w (equation of state)?

a(t) = (t/to) @B+3w)
What is the age of the universe in terms of Ho?

to = (2/(3+3w))(1/Ho)
Can we write the ratio of to/te in terms of redshift?

| +7 = (to/te)Z/(3+3w)

What is the proper distance to some galaxy which emitted its light at time te!?

to
dp(to) = ¢ ftdt/a(t)= (c/Ho)(2/(1+3w))[| — (telto)(1+3W)/(3+3w)]



Horizon Distance

What is the proper distance to galaxy who emitted its light at time te with redshift
z!

do(z) = cto 3(1+w)/(1+3w))[I — (I+2)~(1+3w)12]
do(z) = (c/Ho)(2/(1+3w))[I = (1+z) ~(1+3w)/2]
Blows up if w <= —1/3

if w=0: dp(z) = (2c/Ho)[I — (1+z2)~1/7]

What is the Horizon distance!?
dHor(t) = (c/Ho)(2/(1+3w)) which is finite if w > —1/3

Horizon distance tells us the portion of the universe that is casually connected

w=0: dHor(t) = 2c/Ho = 3cto



Particle Horizon

A key question is which parts of the universe can influence or have
influenced each other, i.e., which parts are in casual contact.

Particle horizon: boundary of that part of the universe that could have
reached us in the age of the universe. At the present epoch, it is the
observable universe.

What is this horizon to redshift z¢!

dHor(ze) = 3cto [1 — (1+ze)712]

In the more general case, can derive for an arbitrary geometry of the
universe and arbitrary fluid component with arbitrary w:

dHor(ze) = (c/Ho) d27(|+Z)/(Qo(|+z)|+3W+(| - 00))05
0

Note (o represents the density of fluid relative to critical, such that | — Qg
= Q)¢ is the critical density.



Particle Horizon

How does the Particle horizon change with time!?

It is proportional to t/to
t/to « (a/ag)3/2 «(1+z)=372

8x smaller at z~3, 30000x smaller at z~1000



Particle Horizon

How did Proper Distance of Particle horizon change with time!?
it is proportional to t/to

t/to « (a/ao)3/2 «(1+2z)=372
8x smaller at z~3, 30000x smaller at z~1000

How does this horizon change relative to the scale factor of the universe
(i.e. divide by 1/(1+z))

dHor (1+2) = (1+2)7172

Therefore, with the horizon, we potentially probe further and further in the
regions of the universe to which we have never been in casual
contact

We illustrate this on the next page...



Horizon in flat Q =1 model

time

pper distance

scale as
t2/3

scale as
t



Horizon Problem

We receive light from galaxies or other sources which appear never to have
been able to communicate with each other or us before.

— So, why do these different regions of the universe appear
homogeneous!?

This is called the horizon problem.
fluctuations at |

Consider two different regions in the CMB

part in 100000

- -
=
‘H\"\.
-

"\ angular diameter
distance

2 sin(0/2) Da(2)

If distance is larger than 2Dn(z), then the
points are not casually connected

This occurs when 0 > 3.6 degrees

(. : :
but almost all points on sky are separated by a larger distance than this, so
how can the points have similar temperatures!?



Horizon Problem

but almost all points on sky are separated by a larger distance than this, so
how can the points have similar temperatures!?

Note that the integral f cdt / a(t) depends on the form of a(t) at early times.

we need to change how a(t) scales at early time so that points in casual
contact at the earliest times, leave the horizon, and then reenter.

Need accelerated expansion, i.e., inflation, which occurs when w < —1/3. We
saw that for w < —1|/3, there is no particle horizon
(if a(t) maintains form to z = )



