
Origins & Evolution of the Universe
an introduction to cosmology — Fall 2018

Rychard Bouwens

Origins'&'Evolu.on'of'the'Universe'
an'introduc.on'to'cosmology'–'Fall'2016'

Henk'Hoekstra'&'Andrej'Dvornik'
hDp://www.strw.leidenuniv.nl/~hoekstra/TEACHING/OEU/OEU.html'

Lecture 12:  Finishing Thoughts / Review



Layout of the Course

Sep 24:  Introduction and Friedmann Equations
Oct 1:   Fluid and Acceleration Equations
Oct 8:   Introductory GR, Space Time Metric, Proper Distance
Oct 15: Redshift, Horizons, Observable Distances
Oct 17: Problem Class #1
Oct 22: Observable Distances, Parameter Constraints
Oct 29:  Thermal History, Early Universe
Nov 5: Early Universe, Inflation
Nov 12: Inflation, Lepton Era, Big Bang Nucleosynthesis
Nov 14: Problem Class #2
Nov 19: Recombination, Cosmic Microwave Background Radiation
Nov 26: CMB Radiation (II), Introduction to Structure Formation
Dec 3: Introduction to Structure Formation (II)
Dec 5: Problem Class #3
Dec 10: Finishing Thoughts, Review 
Dec 21: Final Exam



Review Last Week



Modeling the Growth of Structure using Waves in Fluid

We will look for solution in the form of plane waves δui = δi eik・r where δui = δρ, δv, δϕ, δs

Given that the unperturbed solution do not depend on position, we can search for solutions:
δi(t) = δ0,i eiωt amplitude D, V, Φ, Σ

If λ > λJ,  the frequency is imaginary: ω = ± i (4πGρ0)1/2 [1−(λJ/λ)2]1/2

and the solution for the density is dρ/ρ0 = δ0 eikr e±ωt

The characteristic time scale for the evolution of the amplitude is

τ = ω−1 = 1/(4πGρ0)1/2 [1−(λJ/λ)2]−1/2

for λ >> λJ, this corresponds to the dynamical or free-fall time. 

The solutions are of two types, depending on whether λ = 2π/k larger or smaller than

λ = cs (π/Gρ0)1/2

In the case that λ < λJ,  the value of ω is real and ω = ±cs k[1−(λ/λJ)2]1/2

These represent two sound waves in directions ±k with a dispersion ω



Growth of Structure in Expanding Universe

Let us now look at the homogeneously expanding solution with expansion faction a(t)

ρbg = ρ0 (a/a0)−3,  vbg = ((da/dt)/a)r, Φbg = (2/3)πGρbgr2, pbg = p(ρbg)

=> d2δ/dt2 + 2((da/dt)/a) dδ/dt + ik(cs2k2 − 4πGρ)δ = 0

This results in the following equation:

To solve this equation, we need a prescription of a, ρ, and cs

* Flat matter-dominated Einstein-de Sitter model

ρ = 1/(6πGt2) a = a0 (t/t0)2/3 (da/dt)/a = H = (2/3t)

=> d2δ/dt2 + (4/3)(dδ/dt)/t − (2/3t2)[1 − cs2k2/4πGρ]δ = 0
If we assume that matter compromises monoatomic particles of mass m, then the sound speed is

cs = (5kBTm/3m)1/2 = (5kBT0,m/3m)1/2 (a0/a)

In this case that csk is very small (long wavelengths, low sound speed)

Try a solution δ ∝ tn

=> [n(n−1) + (4/3)n − 2/3]tn−2 = 0

=> n(n−1) + (4/3)n − 2/3 = 0 => n=−1 or n=2/3

growing mode δ+ ∝ t2/3 ∝ a; decaying mode δ− ∝ t−1

=> d2δ/dt2 + (4/3)(dδ/dt)/t − (2/3t2)δ = 0

The densities grow δ ∝ t2/3 ∝ a(t) ∝ 1/(1+z) as long as δ << 1



Growth of Structure in Expanding Universe:  Different cases
For large k (short wavelength) and under the assumption that cs varies slowly

d2δ/dt2 + (4/3)(dδ/dt)/t − (2/3ρ)(1− cs2k2/4πG)δ = 0

we find solutions n2 + (n/3) − (2/3)[1 − cs2k2/4πGρ] = 0If we try again δ ∝ tn 

n = −(1/6) ± (1/6)(25−6cs2k2/πGρ)1/2 = 0

hence instability when k <~ (Gρ)1/2/cs2 and oscillations for larger k

If we consider a low Ωm where curvature dominates, then a ∝ t and

d2δ/dt2 + 2dδ/dt/t = 0, which has solutions δ ∝ t−1 and δ ∝ t0

i.e., no growth in a low density universe

If we consider a lambda-dominated universe, then
and d2δ/dt2 + 2(da/dt/a) dδ/dt = 0, with solutions δ- ∝ e−2Ht and δ+ ∝ t0

i.e., no growth in a lambda-dominated universe

In the case of a radiation dominated universe, the derivation needs to include the pressure in the 
energy density ρ → ρ + P/c2 and one can show that

d2δ/dt2 + 2((da/dt)/a)dδ/dt + [csk2 − 32/3π Gρ]δ = 0

For a radiation dominated universe where a ∝ t1/2 and ρ = 3/32πGt2

=> d2δ/dt2 + (dδ/dt)/t − (1/t2)[1 − 3cs2k2/32πGρ]δ = 0

For k → 0, the solution δ ∝ tn with δ+ ∝ t1 and δ− ∝ t−1

As before, damped oscillations for large k, with a transition near the Jeans Length



How does structure grow?

δ ∝ a2

P ∝ a4 no growth

δ ∝ a
P ∝ a2

δDM ∝ a, PDM ∝ a2, 

oscillations in 
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P ∝ a2

δ ∝ a
P ∝ a2

above horizon below horizon

radiation
dominated

epoch

matter
dominated

epoch
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decoupling
(if Ωm~1)

z

3500

1100



Growth of Structure at Early Times

Consider now the growth of matter perturbations in a Universe where expansion is driven by a 
relativistic component.

Assume k = 0  => d2δ/dt2 + 2((da/dt)/a)dδ/dt −4πGρmδ = 0

We already examined the evolution for t >> teq (matter-radiation equality)

But at earlier times a and ρ evolve differently!

If we define y = ρm/ρr = a/aeq increases with time;  y = 1 at z = zeq ~3500

Then d2δ/dt2 + 2((da/dt)/a)dδ/dt −4πGρmδ = 0 can be rewritten as 

Has 2 solutions: one growing and one decaying.   The growing mode:

δ+ ∝ 1+(3/2)y ~ 1 + 5000/(1+z)

Before zeq, we have that y < 1 and the growing mode is frozen.   This Meszaros effect applies to 
cold dark matter density fluctuations (not coupled to the radiation via pressure) on large scales.

The total growth from 0 to teq is δ+(y=1)/δ+(y=0) = 5/2 and afterwards by another factor 1+zeq

The physical reason for this slow growth is that before teq the Jeans time is longer than the 
expansion time.  The energy in radiation causes the Universe to expand so fast that the matter 

has no time to respond.

δ’’ + (2+3y)δ’/2y/(1+y) −3δ/2y/(1+y) = 0



Growth of Structure

Before decoupling, the dark matter grows normally, i.e., δDM ∝ a

but the baryon dynamics are coupled to that of the radiation.   
=> δbary oscillates like the radiation, so δDM >> δbar

−d2δbar/dt2 +(4/3t)dδbar/dt = 4πG(ρbar δbar + ρDM δDM)−

d2δDM/dt2 +(4/3t)dδDM/dt = 4πG(ρbar δbar + ρDM δDM)−−

If we use that δm = (ρbar δbar + ρDM δDM)/(ρbar + ρDM) ~ δDM
− − −− and Δ  ≡(δDM − δbar)

d2Δ/dt2 +(4/3t)dΔ/dt = 0 => Δ = constant or Δ ∝ t−1/3 

δm ∝ t2/3 ∝ a

δDM /  δbar = (ρm δm + ρbar Δ)/(ρm δm − ρDM Δ) → 1

The initial non-zero value of δbar at decoupling leaves a small effect on δm at later times =>
these are the baryon acoustic oscillations.

 but after decoupling,



Growth'of'structure'

from'“Introduc.on'to'Cosmology”'(Ryden,'2014)'



Growth'func.on'

From'“Cosmology”'Coles'&'Lucchin,'2nd'edi.on'



C. Porciani! Observational Cosmology! III-111 !

BAOs: a Green function approach!

imagine we have a 
overdensity here at 

time t = 0
dark matter will 
fall towards it

but baryons and 
radiation will 

bounce

Baryons + DM affect each other after decoupling: How?
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C. Porciani! Observational Cosmology! III-114!

BAOs: a Green function approach!
Baryons + DM affect each other after decoupling: How?



C. Porciani! Observational Cosmology! III-115!

BAOs: a Green function approach!

Sound horizon 

at matter-

radiation 

decoupling 

this bump is at 
150 Mpc!

C. Porciani! Observational Cosmology! III-119!

Baryonic oscillations!

Baryons + DM affect each other after decoupling: How?



Dark'maLer'fluctua.ons'
AOer'decoupling'the'baryons'start'following'the'gravita.onal'poten.al'
defined'by'the'dark'maLer'but'they'retain'some'of'the'imprint'of'the'
soundFwaves'at'decoupling:'the'baryon'accous.c'oscilla.ons.'

Anderson'et'al.'(2012)'



New Material for This Week



Power Spectrum

If the overdensities/underdensities δ are a Gaussian field (as predicted by many 
theories) then the power spectrum P(k) completely specifies the statistical properties. 

P(k) quantifies the amount of clustering for each k-mode.

The power spectrum is defined as
<δ(k)δ*(k’)> = (2π)3 δD(k−k’)P(k)

isotropy implies that P(k) can only depend on |k|

where δD is the delta Dirac function.



Measuring the Matter Power Spectrum From Galaxies: 
Correlation Function

The two-point correlation function gives the excess probability of finding pairs of 
objects at a separation r.  It is defined as ξ(r) = <δ(x1)δ(x2)> and this is related to the 

power spectrum through its Fourier Transform

ξ(r) = <δ(x1)δ(x2)> = ∫ d3k/(2π)3 eik・x P(k)

The power spectrum has units of length and it is convenient to define a dimensionless version:

Δ2(k) = (4πk3 P(k))/(2π)3



We quantify clustering in terms of 
correlation functions

C. Porciani! Observational Cosmology! III-39!

Correlation functions!

dV1 

r12 

dV2 

dP1 = n dV1  

dP12 = n2 (1+#(r12)) dV1 dV2 

dP123 = n3 (1+#(r12)+ #(r13)+ #(r23)+$(r12, r13, r23)) dV1 dV2 dV3 

Consider a stationary point process with mean density n and write the 

probability of finding N points within N infinitesimal volume elements 

dV1 

dV1 

r12 

dV2 

dV3 

r13 

r23 
dP1 = n dV1

dP12 = n2 (1 + ξ(r12)) dV1 dV2

The Correlation function ξ is not equal to zero -- since 
the presence of a galaxy at some place in space makes it 

more likely another one will be close by....

n = average density of galaxies
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What is the origin of fluctuations in the energy density in 
the first place?



What is the origin of 
fluctuations in the energy 
density in the first place?



Infla.on'

Dodelson'(2003)'

H ~ constant
scales as 1/a

a ∝ e(Λ/3)t

scales as a

Remember the situation regarding Horizons and Inflation:

Hubble Radius 
(c/H)/a

in comoving
coordinates



Let’s take as an apology the following situation:

T
im

e

At time t = 0, members of this class - 
chat with other about initial 

conditions (IC)

Rapid period of Inflation - Each of us fall out of causal 
contact with the others in the class, but know about IC 

from discussion at beginning 

As expansion slows and we come into causal contact 
with each other again, we see that we all have the same 

ICs.



Under non-expanding circumstances, quantum fluctuations die out quickly, but during 
inflation the expansion is so fast that any fluctuation is moved outside the horizon of 
any compensating fluctuation.   By the time they are back in each other horizon they 

are in back in each other’s horizon, they are no longer quantum scale:

a(t) = a(tinfl) eH(t − tinfl)

when inflation started

It is given by the time it takes for the fluctuation to expand to the Hubble radius

(afreeze/aquant)λquant = rH = c/H

=> Δt = (1/H)ln(afreeze/aquant) = (1/H) ln (c/Hλquant )

During inflation, H ~ constant and we can reasonably assume the same for λquant,

Δt is constant.

If during inflation, perturbations are generated at a given rate => fixed number per 
logarithmic interval in space (because of exponential expansion).  This continues for
many e-folding times and during each interval, the fluctuation looks the same => i.e. 

power spectrum must be scale free => power law P(k) ∝ kn

Setting Up Primordial Power Spectrum From Inflation

How long does it take for a quantum fluctuation of size λquant to freeze out?   i.e., what 
is Δt ~ t − tinfl?



ΔΦ2 ≡ k3PΦ(k) ∝ constant but ▽2Φ = 4πGρδ => k2Φ ∝ −δ(k)
Fourier 

Transform

Pδ(k) ∝  k4PΦ(k) ∝ k(k3PΦ(k)) ∝ kΔΦ2  ∝ k

k4PΦ(k) ∝ Pδ(k) using the definition of P(k)
=> n=1 assuming Pδ(k) ∝ kn

Setting Up Primordial Power Spectrum From Inflation

Let us take the primordial power spectrum P(k)  to have a form Akn;

a n=1 model is called a Harrison-Zeldovich spectrum

If the scalar field that is perturbed is related to the gravitational potential Φ and the 
fluctuations are of the same amplitude => ΔΦ2 = constant

 i.e., fluctuations are scale-invariant in the gravitational potential Φ



How does structure grow?

δ ∝ a2

P ∝ a4 no growth
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P ∝ a2

δDM ∝ a, PDM ∝ a2, 

oscillations in 
baryons

δ ∝ a
P ∝ a2

δ ∝ a
P ∝ a2

above horizon below horizon

radiation
dominated

epoch

matter
dominated

epoch

after 
decoupling
(if Ωm~1)

z

3500

1100



Inflation sends perturbations beyond the horizon, but after the end of inflation the horizon is 
expanding again.

Perturbations that have not yet entered the horizon continue to grow (to demonstrate this 
requires a rigorous GR treatment); we saw that δ(k) grows as a2  

=> P(k) grows as a4

Large scale modes enter later and thus have had more time to grow, but if a mode enters the 
horizon during radiation domination its growth will cease and instead oscillate due to the 

radiation pressure.

The observed power spectrum is quite different than
the primordial power spectrum

Transfer function

P(k) = Akn T2(k)

T(k) captures the growth of fluctuations in and outside the horizon.

Different Growth of Structure on Small + Large Scales

This does not apply to the DM: during radiation domination it is the radiation fluid that produces 
the growth of modes, but the DM interacts only through gravity.   The density of DM can stream 
into the gravitational well produced by a perturbation in the radiation fluid, but on small scales 

this averages out.

DM growth essentially stalls.



Illustrating why there is a peak in the matter 
power spectrum04.2.26 Chris Pearson :   Observational Cosmology 3: Structure Formation - ISAS -2004
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Instead of simply P(k) !  often plot (k3P(k))1/2 the root mean square mass fluctuations

The Power Spectrum

We therefore have an equation for the evolution of the Power Spectrum:

The Initial Power Spectrum

where the constant A is the overall normalization -- it can *not* be determined 
from theory but must be fixed by measurements of the power spectrum.  

The initial power spectrum is:

Friday, April 23, 2010

The initial power spectrum of fluctuations is the following:

Therefore we could 
expect P(k) at large 
scales to grow much 
more than at small 

scales
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Evolution of the Matter Power Spectrum 
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Evolution of the Matter Power Spectrum 

P(k)!

K (wavevektor)!

Horizon scale!

H.-Z. spectrum!

horizon at 

equipartition!

today!

Credit: Bohringer

large scales
small k

small scales
large k



Setting Up Primordial Power Spectrum From Inflation

Modes entering after aeq have P(k) ∝ k and have grown by (aeq/ai)4

Peq(k)  = (aeq/ai)4 Pi(k)   k << kenter-eq

Modes that enter before aeq grew by factor (aenter(k)/ai)4 where aenter(k) ∝ 1/k

=> Peq(k) ∝ k−3    for  k >> kenter-eq

The power spectrum peak around k ~ kenter-eq

A feature of some some length l grows in proportion to a, but as the horizon grows as dH 
∝ a3/2,  so larger features come into causal contact with each other at later times

=> we therefore expect the transfer function to depend on Ωmh2 and k

What is the power spectrum which results?   Let’s quantify issues:

The position of the peak of the power spectrum depends on the Horizon Size

dH = 2c/H = 2c/H0 (Ωm,0)0.5 (1+z)−1.5

which is equal to the above in a matter-dominated universe at z >> 1/Ωm,0

Where is the peak of the power spectrum?



Where is the peak in the power spectrum?

We already found that for y ≡ ρm/ρr = a/aeq that δm ∝ 1 + (3/2)y

=> δm ∝ constant for a << aeq and δm ∝ a for a >> aeq

In the radiation-dominated era perturbation modes with l < dH(zeq) enter the horizon 
but δ is constant.

In the matter-dominated era, all modes grow and δ ∝ a

=> the power spectrum must have a break on the length scale of the horizon at 
matter radiation equality:

dH(zeq) ~ 16/(Ωm,0h2) Mpc k ~ 0.06 Ωm,0h2  Mpc−1

For k < keq (large scales) fluctuations enter the horizon during the matter dominated 
era and grow, i.e., preserving the initial power spectrum P(k) ∝ k

For k > keq (small scales) fluctuations enter the horizon during the radiation 
dominated era and cannot grow => P(k) ∝ k−3

The baryon acoustic oscillations are superimposed on the dark-matter fluctuations.
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The Power Spectrum

We therefore have an equation for the evolution of the Power Spectrum:

The Initial Power Spectrum

where the constant A is the overall normalization -- it can *not* be determined 
from theory but must be fixed by measurements of the power spectrum.  

The initial power spectrum is:

Friday, April 23, 2010

The initial power spectrum of fluctuations is the following:
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Instead of simply P(k) !  often plot (k3P(k))1/2 the root mean square mass fluctuations

Position of turn-over 
determined by horizon size 
@ matter-radiation equality

Illustrating why there is a peak in the matter 
power spectrum
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Transfer'func.ons'
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AOer'decoupling'the'baryons'start'following'the'gravita.onal'poten.al'
defined'by'the'dark'maLer'but'they'retain'some'of'the'imprint'of'the'
soundFwaves'at'decoupling:'the'baryon'accous.c'oscilla.ons.'

Anderson'et'al.'(2012)'



Adiabatic Perturbations

Before recombination, the baryons and the radiation were tightly coupled.  The entropy per unit 
mass in a volume has a very high value because of the large value of σrad (entropy per baryon).

=> entropy is carried almost entirely by radiation

S = (4/3)σT3V ∝ σrad ∝ T3/ρm ∝ ρr 3/4/ρm σrad = 4mpσrT3/3kBρm

An adiabatic perturbation leaves S invariant and consists of fluctuations in both ρm and ρr  such that 

δS/S = 0 = δσrad/σrad = 3 δT/ T − δρm/ρm = (3/4) δρr/ρr − δρm/ρm

δm ≡ δρm/ρm = 3 δT/ T = (3/4) δρr/ρr ≡ 3/4 δr

We discussed earlier that the value of σrad might be related to the microscopic physics of a GUT 
or electroweak phase transition; if that is correct, then we expect fluctuations to have the same 

value for σrad  => we expect adiabatic perturbations.

In what form do fluctuations in the radiation/matter energy density take?   How large are 
fluctuations in matter relative to fluctuations in radiation and also in the temperature?

How does δm compare to δr ?



Exam will take place 10-13 PM
on December 21

Have you registered?



What will be on the exam?
1.  Exam will cover very similar material to the problems on the 

problem sets.   Expect one problem on the exam very similar 
to one of these.  One problem may be more or less identical to 

a homework problem.

2.  Be familiar with all the basic derivations done in class and major 
concepts: Friedman’s equations, fluid equations, particle horizon, 
freeze out, equation of state parameters, adiabatic expansion and 

entropy conservation.

3.  Have a thorough understanding of the challenges with the Big 
Bang theory and be capable of explaining / quantifying how 

inflation can address those challenges.

4.  Know especially the material from the lecture that is quickly 
reviewed at the beginning of the following lecture, as that is

the most important.



What will be on the exam?
5.  You should be familiar with all the material discussed in those 
sections of the Barbara Ryden book covered in class and a few 
parts of Coles & Lucchin.   You might expect exam problems on 

the level of the material in that book.

6.   You will not be expected to memorize every equation covered 
in class, but if equations come up repeatedly in different lectures, I 

would strongly suggest being familiar with them and their 
dependencies on various variables.

7.   You should expect ~4-5 problems with multiple parts on the 
exam.   There will be a number of short answer questions where I 
ask you to describe various important concepts covered in class.


