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Layout of the Course

Sep 24: Introduction and Friedmann Equations

Oct |: Fluid and Acceleration Equations

Oct 8: Introductory GR, Space Time Metric, Proper Distance
Oct |5: Redshift, Horizons, Observable Distances

Oct 17: Problem Class #]|

Oct 22: Observable Distances, Parameter Constraints

Oct 29: Thermal History, Early Universe

Nov 5: Early Universe, Inflation

Nov |2: Inflation, Lepton Era, Big Bang Nucleosynthesis

Nov 14: Problem Class #2

Nov 19: Recombination, Cosmic Microwave Background Radiation
Nov 26: CMB Radiation (Il), Introduction to Structure Formation
Dec 5: Problem Class #3

Dec 10: Finishing Thoughts, Review
Dec 21: Final Exam



Problem set #3 was mailed to
you |.5 weeks ago

Due this Wednesday |3:30
December 5



Exam will take place 10-13 PM
on December 2|

Have you registered!



Review Last Week



Power Spectra Derived from Fluctuations in CMB

-- Use the spherical harmonic expansion to construct a power
spectrum to describe anisotropies of the CMB on the sky

Power Spectrum
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First question: how large can the angle become before the
regions become casually disconnected!?

Here is such a spectrum:
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Cosmic Microwave Background
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Sachs-Wolfe Plateau: Constrain normalization of primordial
power spectrum

| st acoustic peak: Measure Angular Diameter Distance to Last
Scattering Surface

Ratio of Even and Odd Acoustic Peaks: Probe Baryon Content

Ratio of Amplitude of 3rd to |st Acoustic Peak: Matter Content
High Frequency Modes: Silk Damping...



What about the damping tail?

-- Decoupling does not happen instantaneously. This is not so important in viewing the last
scattering surface for larger fluctuations. But for smaller fluctuations, the stuctures will overlap.

lonized Plasma

Note finite width
of last scattering
surface z = 1130 £

Redshift
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With smaller structures, projection effects
— will play a significant role in diluting signal

Silk Damping

Even before recombination, matter and radiation are not perfectly coupled: radiation
leaks out of the perturbation, which leads to a dissipation of the perturbation.

Neutral hydrogen

This process occurs because photons bounce around (following a random walk) during
recombination; for small scale fluctuations, the hot and cold photons can mix
=> on the scales corresponding to the distances photons can travel, the fluctuations are damped.

The dissipation scale Ap ~ 2¢(Tye t)!/2 at time t
mean time before Thomson scattering: Tye « ne™! « (1+2)73
Before teq, Ap « (1+2)52 since to (l+z)2
After teq, Ap = (1+z)94 since t« (I+z)7!5



How CMB light can be broken down?
Measure Temperature and Polarization of Light

One tends to break down the polarization map into two modes
(Helmholtz-Hodge theorem)

90% of the \E[O/ /TN

£>0 E-modes are curl free and
- E-mod — " -
photons in the o0 RN "/ can be written as the
CMB are | — gradient of a potential
unpolarized; hot spots cold spots VxE=0
this leaves 10% A U7
| e RN
which is B-modes . . B-modes have no
polarized NN oS divergence.
—/ N V-B=0

The terms E and B modes simply reflect the general
form of the polarization fields and are in analogy with
similar fields in electromagnetism. However, they have

no direct relation with electric or magnetic fields
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Contains Very Similar Information to that Present in TT Power
Spectrum...

Allows us to verify that we understand the physics correctly...
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Signal arises from () gravity waves from inflation and (2) the
impact of gravitational lensing on CMB...

Detection first reported in 2014 by BICEP Il, but most of the signal
likely from dust emission in our own galaxy



Gravitational instability




Growth of Structure

We start with tiny fluctuations in the background radiation temperature, which are
related to density fluctuations. These grow into the very clustered universe we see
today. We therefore need to study the density perturbations.

Consider a static, homogeneous matter-only Universe in which there is a spherical
region that is overdense:

o(t) = (p - p)/p << |
d2R/dt2 = ~G(AM)/R? = —G((4/3)rR%p3)/R2

d2R/dt2/ R = —(41/3)Gpd

Hence, a mass excess O > 0 will cause the sphere to collapse

Conservation of mass gives M = (411/3)p[1+0(t)]R(t)3 = constant during collapse
R(t) = Ro[1+0]-'3 where Ro = (3M/4T11p)!/3
If & << I, then R(t) = Ro[1=(1/3)8(t)] => d2R/dt2 = —(1/3)Rod28/dt2

mass conservation yields ==> d2R/dt2 = —(1/3)Rod2d/dt2 (0<<I)

d20/dt2 = 411G p_6 which has solutions & = A et/tdm + Aje-t/tdyn



Growth of Structure

However, as the sphere collapses, pressure will build up. When a sphere is compressed by its
own gravity, a pressure gradient will build up to counter the effects of gravity (e.g., in a star)

If the pressure gradient balances gravity, we have hydrostatic equilibrium.

The pressure gradient steepening takes time: any change in pressure travels with the
speed of sound cs; therefore the time to build up a pressure gradient is a sphere of
radius R is pressure ~ R/c;

cs = c (dP/dp)l2 =wl2 ¢
For hydrostatic equilibrium to develop the gradient must build up before collapse:

R/cs = Cpressure < tdyn = (G P)'”Z =>R < Cstdyn = Cs/(c‘f_))”2 = >\J
Jeans Length
A more accurate derivation yields A\j = ¢s(TT/Gp)'/2 = 2TTcs tdyn

Consider a spatially flat Universe with mean density p => I/H = (3/81‘[G[3)”2=(3/2)”2 tdyn

The Jeans length in an expanding universe will then be

A = 2TTcsteyn = 2TT(2/3)2¢5/H = 1.22 tayn

If we now focus on one component with equation of state w and ¢s = (w)!2 ¢
N = 2TTcstayn = 2TT(2/3)12w!/2 ¢/H

For a photon gas, ¢ = ¢/3!2 ~ 0.58c => A\j = 2TTcstayn = 27T 212 ¢/3H ~ 3c/H



Growth of Structure

Density fluctuations in the radiative component will be pressure supported if they are
smaller than 3 times the Hubble radius

Such fluctuations will oscillate. Only larger ones will collapse.

To get collapsed structures, we need a non-relativistic component with w!/2 << |

Prior to decoupling, the baryons were coupled to the photons => no collapse possible

At C/H(Zrec) ~ 0.2 MPC and EY - |.4 Ebaryon
=> N\ (before decoupling) = 3c/H(zrec) = 0.6 Mpc

baryon Jeans mass before decoupling = 7 x 1018 Myun
30,000x coma cluster

After decoupling, we have two separate gases: for baryons, the sound speed drops to

< (b = (kT/mc2)!/2 kT = 0.26 eV
¢ (baryon) = (kT/mc?) 1 c mc2 = .22 m, c2 = | 140 MeV
cs (baryon) = (1.5 x 1073)c or 5 km/s Y =0.24

Then, after decoupling, the Jeans length decreased by a factor of cs(baryon)/cs(photon) ~ 2.6 x 103

much smaller than the mass of our galaxy,

~ 105
M; (after) ~ 10> Msolar ~baryonic mass of the smallest dwarf galaxies

After decoupling, baryon density perturbations could start growing.



Growth of Structure

We can study the Jeans theory in a bit more detail, focusing first on the collisional fluids.
The equations of motion are in the Newtonian approximation:

op/ldt+V - (pv) =0 continuity equation
ov/iot+ (v - V)v+ (l/p)P+ VD=0 Euler equation
V2o -411Gp =0 Poisson’s Equation

We will also neglect any dissipative terms arriving from viscosity or Thermal conductivity.
Therefore, we have conservation of entropy per unit mass:

0S/ot+v - VS=0
A trivial solution is the following: p = po,v =0,S = So,p = po, VP =0

Note that if p = po # 0, then ® must vary spatially => homogeneous distribution of p cannot
be stationary, similar to what we saw when we derived the Friedmann equation

Although the derivation is formally incorrect, the results are qualitatively unchanged and the
results can be “reinterpreted” to give correct results.

p = po+ 0p, v = dv, p=po+0p S=S0+3S ® = do+ 5
00p/dt + poV - (0V) =0
0dv/0t + (1/po)(dp/dp)sV 8p + (1/po)(dp/ds),V s + VO =0
V20 - 411Gop =0 00S/0t=0



Modeling the Growth of Structure using Waves in Fluid

We will look for solution in the form of plane waves du; = O; ek - r where Ou; = dp, dv, 0, Os

Given that the unperturbed solution do not depend on position, we can search for solutions:
i(t) = Oo, eiwt amplitude D,V, ®, >

Use that ¢s = (OP/0p)sand 0o = D/po

=> k2 ® + 4TTGpodo = 0

=>w2=0

=>wotk V=0
=>wV+kc2d+ k/p (dp/ds)p 2 + kP =0
Let us consider solutions with w # 0 => 2 = 0: perturbations are adiabatic

Also, k - V # 0, we can decompose into components parallel and perpendicular to V

k perpendicular to V => 8o = 0, ® = 0, these vertical models do not imply a density perturbation.

K is parallel toV  =>w 0o+ kV =0 w k O 0o 0
=> WV + ke2 00 + kP =0 ( kes2 Wk )(V) — (0)
=> 2 ® + 4TTIGpodo =0 4TtGpo 0 k2 ¢ 0

This admits a non-zero solution for 0o,V, ® if and only if its determinant vanishes => w and k
must satisfy the dispersion relation

=> w2 - c2 k2 + 4TIGpo =0



New Material for This VWeek



Modeling the Growth of Structure using Waves in Fluid

We will look for solution in the form of plane waves du; = &; eik - ¥ Where Oui = dp, OV, 0P, ds

Given that the unperturbed solution do not depend on position, we can search for solutions:
Oi(t) = O, eiwt amplitude D,V, ®, 2

The solutions are of two types, depending on whether A = 211/k larger or smaller than
N = ¢s (TT/Gpo)'2

In the case that A < A}, the value of W is real and W = c¢s k[1—(A/\))?2]'2
These represent two sound waves in directions £k with a dispersion W
If A > N, the frequency is imaginary: ) _ 4 (4T1G o) 2 [1-(\/N)] 12
and the solution for the density is dp/po = 0o elkr e*wt
The characteristic time scale for the evolution of the amplitude is

T =W = 1/(4TIGP0)' 2 [I ~(\/N)2] 2

for A >> A}, this corresponds to the dynamical or free-fall time.



Gravitational instability
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Gravitational instability
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Growth of structure
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Growth of Structure in Expanding Universe

Let us now look at the homogeneously expanding solution with expansion faction a(t)
Pre = Po (a/20), Vieg = ((da/dt)/a)F, Pog = (2/3)TIGPrgr?, pog = P(Pog)
We again perturb the background using

dpsg/dt = —3((da/dt)/a)peg; V * Vbg = 3((da/dt)/a); (dv * V)Veg = ((da/dt)/a)dv

=> 0op/dt+ poV * (0v) =0
00v/0t + (1/po)(dp/dp)sV Op + (1/po)(dp/ds)p,V s + VOP =0
V200 - 41T1GOp =0

We can drop the ¥ © V terms since they are a coordinate dependent artifact of the Newtonian formulation
As before, Ou; = ui(t)ekr (note k = (2T1/A) = (2T1/No)(a0/a) = ko (ao/a))
=> dD/dt + 3((da/dt)/a) D + ippg (k - V) =0
dv/dt + ((da/dt)/a)v + ics2 k(D/p) +ik - D=0
k2p + 4G D =0

=> dD/dt + 3((da/dt)/a) D + ippg kV =0

dV/dt + ((da/dt)/a)V + ik(cs2 — 4TTGppg/k2)D/p = 0
as D = ppg O (dD/dt = dpug/dt d + pug dO/dt) dd/dt +ikV =0

pbg 6

which upon differentiation gives d20/dt? + ik(dV/dt — (da/dt)V/a) = 0
=> d20/dt2 + 2((da/dt)/a) dd/dt + (c2k2 — 4TTIGp)d = 0



Growth of Structure in Expanding Universe

=> d285/dt2 + 2((da/dt)/a) dd/dt + (c2k2 - 4TTGP)S = 0

This is a generalization of the static case and gives the evolution of perturbations of
waves with wavenumber k as long as 0 << |

To solve this equation, we need a prescription of a, p, and cs

* Flat matter-dominated Einstein-de Sitter model
p = 1/(6T1Gt2) a = ap (t/to)?3 (da/dt)/a = H = (2/3¢t)
=> d20/dt2 + (4/3)(do/dt)/t — (2/3t2)[| — c2k2/4TTGp]d = 0

If we assume that matter compromises monoatomic particles of mass m, then the sound speed is

Cs = (SkaTm/3m)1”2 = (5keTom/3m)!2 (aola)

In this case that csk is very small (long wavelengths, low sound speed)
=> d20/dt2 + (4/3)(dd/dt)/t — (2/3t2)d =0
Try a solution O « tn
=>[n(n—1) + (4/3)n — 2/3]t~2=0
=>n(n—1) + (4/3)n-2/3=0 => n=-| or n=2/3
growing mode O+ « t23 « a; decaying mode 0- « t”!

The densities grow O « t23 « a(t) « |/(l1+z) as long as ® << |



Growth of Structure in Expanding Universe: Large k

For large k (short wavelength) and under the assumption that ¢ varies slowly
d20/dt2 + (4/3)(dd/dt)/t — (2/3p) (1 — c2k2/4TTG)d = 0
looks like a damped harmonic oscillator with frequency |/t

If we try again O « tn we find solutions n2+ (n/3) — (2/3)[| — <2k?/4TTGp] =0
n=—(1/6) £ (1/6)(25—6cs2k2/TtGp)!’2=0

hence instability when k <~ (Gp)!/2/cs2 and oscillations for larger k
Once more the Jeans criterion



Growth of Structure: Open/Lambda/Radiation Universes

Open

- If we consider a low Qn where curvature dominates, then a « t and

and d20/dt2 + 2dd/dt/t = 0, which has solutions ® « t~'and d « t0
i.e., no growth in a low density universe

Lambda

- If we consider a lambda-dominated universe, then
and d20/dt? + 2(da/dt/a) do/dt = 0, with solutions 0- « e2Htand O+ « t0

i.e., no growth in a lambda-dominated universe

Radiation

- In the case of a radiation dominated universe, the derivation needs to include the pressure in the
energy density p = p + P/c2 and one can show that

d20/dt? + 2((da/dt)/a)dd/dt + [csk?2 — 32/31T1 Gp]d =0
For a radiation dominated universe where a « tl’2and p = 3/3211Gt2
=> d20/dt2 + (do/dt)/t — (1/)[1 — 3¢c:2k?/32TTGp]d = 0

For k = 0, the solution ® « t"with O+ « t' and O- « t~!

As before, damped oscillations for large k, with a transition near the Jeans Length



How does structure grow!
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Growth of Structure at Early Times
(before matter-radiation equality)

Consider now the growth of matter perturbations in a Universe where expansion is driven by a
relativistic component.

Assume k=0 => d20/dt2 + 2((da/dt)/a)dd/dt — 4TTGpmd = 0
We already examined the evolution for t >> teq (matter-radiation equality)
But at earlier times a and p evolve differently!

If we define y = pm/pr = alaeqincreases with time; y = | at z = zeq ~3500
O = dpm/pPm; rewrite the perturbation equation from a function of time in one of y

dd/dt = &’ (da/dt)/aeq d28/dt2 = [5”(da/dt)? + &’(d2a/dt2)]/aeq? 0’ = (d/dy)d
Pm=Y/(I+y) p and pr=y/(I+y) p and p = (1/3)p: 2
Friedmann’s Equation: ((da/dt)/a)2= (8T1G/3)(Pm + Pr)

d2aldt2 = (—4TTG/3)(p + 3P/c2)a = (—4TTG/3)(p + p/(1+y))a =

Acceleration Equation:
=(1/2)(2+y)((da/dt)/a)2/ (1 +y)



Growth of Structure
Then d20/dt2 + 2((da/dt)/a)dd/dt —4TTGpmd = 0 can be rewritten as

0" + (2+3y)d’/2y/(1+y) —=30/2y/(l+y) =0
Has 2 solutions: one growing and one decaying. The growing mode:

5+ < 1+(3/2)y ~ | + 5000/(1+z)

Before z.q, we have that y < | and the growing mode is frozen. This Meszaros effect applies to
cold dark matter density fluctuations (not coupled to the radiation via pressure) on large scales.

The total growth from t = 0 to teqis O+(y=1)/0+(y=0) = 5/2 and afterwards by another factor
| +zeq

The physical reason for this slow growth is that before teq the Jeans time is longer than the
expansion time. The energy in radiation causes the Universe to expand so fast that the matter
has no time to respond.



Growth of Structure

Before decoupling, the dark matter grows normally, i.e., Opm « a

but the baryon dynamics are coupled to that of the radiation.
=> Opary oscillates like the radiation,

but after teq,
Let us consider the evolution of dOpm and Ov.r distinctly:
d20p.ar/dt2 +(4/3t)dOpar/dt = 4TTG(Pbar Obar + PoM ODM)
d28pm/dt2 +(4/3t)ddpm/dt = 4TTG(Dbar Obar + POM ODM)

If we use that Oy, = (Ebar Obar + PoM ODM)/(Pbar + p_DM) ~dpm and A = (dpm — Ovar)

d2A/dt? +(4/3t)dA/dt = 0 => A = constant or A « t7!/3

6m « t23 « 2
6DM / abar = (pm 6m + Pvar A)/(pm 6m — PpoM A) — |

The initial non-zero value of Opar at decoupling leaves a small effect on Om at later times =>
these are the baryon acoustic oscillations.



Growth of structure
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FIGURE 4 A highly schematic drawing of how density fluctuations in different compone-
nts of the universe evolve with time.

from “Introduction to Cosmology” (Ryden, 2014)



log,q 16l

Growth function

logq (a(t)/ay)

From “Cosmology” Coles & Lucchin, 2" edition



Baryons + DM affect each other after decoupling: How?
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Baryons + DM affect each other after decoupling: How?
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Baryons + DM affect each other after decoupling: How?
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Baryons + DM affect each other after decoupling: How?
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Baryons + DM affect each other after decoupling: How?
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Dark matter fluctuations

After decoupling the baryons start following the gravitational potential
defined by the dark matter but they retain some of the imprint of the
sound-waves at decoupling: the baryon accoustic oscillations.
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Anderson et al. (2012)




What is the origin of
fluctuations in the energy
density in the first place!?



Remember the situation regarding Horizons and Inflation:

Hubble Radius
(c/H)/a
in comoving
coordinates
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Dodelson (2003)
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Let’s take as an apology the following situation:

®® Attimet=0,members of this class -
@ chat with other about initial
conditions (IC)

—= © —
D S —
Rapid period of Inflation - Each of us fall out of causal

contact with the others in the class, but know about IC
from discussion at beginning

D ®o—

As expansion slows and we come into causal contact

with each other again, we see that we all have the same
ICs.



Setting Up Primordial Power Spectrum From Inflation

Under non-expanding circumstances, quantum fluctuations die out quickly, but during

inflation the expansion is so fast that any fluctuation is moved outside the horizon of

any compensating fluctuation. By the time they are back in each other horizon they
are in back in each other’s horizon, they are no longer quantum scale:

a(t) = a(tinf) eH(t-tinfl)

\ when inflation started

How long does it take for a quantum fluctuation of size Aquan: to freeze out? i.e., what
is At ~ t - tinfi?

It is given by the time it takes for the fluctuation to expand to the Hubble radius
(afreeze/ aquant)>\quant =ru=c/H
=> At = ( I /H)In(afreeze/aquant) = ( I /H) In (C/quuant )

During inflation, H ~ constant and we can reasonably assume the same for Aquan,
At is constant.

If during inflation, perturbations are generated at a given rate => fixed number per

logarithmic interval in space (because of exponential expansion). This continues for

many e-folding times and during each interval, the fluctuation looks the same => i.e.
power spectrum must be scale free => power law P(k) « k»



Power Spectrum

The power spectrum is defined as
<d(k)d*(k)> = (277)3 d(k-k)P(k)
isotropy implies that P(k) can only depend on |k|

If & is a Gaussian field (as predicted by many theorem) then P(k) completely specifies
the statistical properties.

P(k) quantifies the amount of clustering for each k-mode.

Setting Up Primordial Power Spectrum From Inflation

If the scalar field that is perturbed is related to the gravitational potential ® and the
fluctuations are of the same amplitude => A¢? = constant

Ao? = k3Po(k) « constant but V20 = 4T1Gpda? => |20 « —d(k)

Fourier
Transform

k#Po(k) « Ps(k) using the definition of P(k)
Ps(k) « k4Po(k) « k(k3Po(k)) « kAe? « k =>n=| assuming Ps(k) = k"



How does structure grow!

above horizon below horizon Z
radiation
dominated no growth
epoch
3500
matter Opm = @, Ppm « a2,
dominated oscillations in
epoch baryons
| 100
after
decoupling

(if Qm~1)




Different Growth of Structure on Small + Large Scales

The observed power spectrum is quite different than P(k) = Akn T2(K)
the primordial power spectrum

Transfer function
T(k) captures the growth of fluctuations in and outside the horizon.

Inflation sends perturbations beyond the horizon, but after the end of inflation the horizon is
expanding again.

Perturbations that have not yet entered the horizon continue to grow (to demonstrate this
requires a rigorous GR treatment); we saw that d(k) grows as a2 => P(k) gives as a*

Large scale modes enter later and thus have had more time to grow, but if a mode enters the
horizon during radiation domination its growth will cease and instead oscillate due to the
radiation pressure.

This does not apply to the DM: during radiation domination it is the radiation fluid that produces
the growth of modes, but the DM interacts only through gravity. The density of DM can stream
into the gravitational well produced by a perturbation in the radiation fluid, but on small scales
this averages out.

DM growth essentially stalls.



lllustrating why there is a peak in the matter
power spectrum

The initial power spectrum of fluctuations is the following:

Py(k) = A K™
Therefore we could \ t
expect P(k) at large 4 I
scales to grow much | y
more than at small £ L
a

scales /

small k large k
large scales small scales

Ig(k)




Evolution of the Matter Power Spectrum

P(k) 1
................... H.-Z. spectrum
Horizon scale
K (wavevektor)
48
large scales small scales
small k large k

Credit: Bohringer




Evolution of the Matter Power Spectrum

P(k) 1

H.-Z. spectrum

X. Horizon scale

K (wavevektor)
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large scales small scales
small k large k

Credit: Bohringer




Evolution of the Matter Power Spectrum

P(k) 1

">~ horizon at
N e equipartition

7 N\ H.-Z. spectrum
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K (wavevektor)
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Ig(P(k))

lllustrating why there is a peak in the matter
power spectrum

The initial power spectrum of fluctuations is the following:

Py(k) = A K™
Position of turn-over

determined by horizon size

@ matter-radiation equality
A
)
» &
=

small k large k small k large k
large scales small scales large scales small scales

l2(K) > l2(K) >



Statistics of matter fluctuation

Wavelength A [h~! Mpc]
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Setting Up Primordial Power Spectrum From Inflation

What is the power spectrum which results? Let’s quantify issues:

Modes entering after acq have P(k) « k and have grown by (aeq/ai)*
Peq(k) - (aeq/ai)4 P|(k) k << kenter-eq
Modes that enter before aeq grew by factor (aenter(k)/ai)* where aenter(k) « 1/k

=> Peq(k) « k™3 for k >> Kenter-eq

The power spectrum peak around k ~ kenter-eq

The position of the peak of the power spectrum depends on the Horizon Size
dn = 2¢/H = 2¢/Ho (Qm,0)03 (1+2)!5
which is equal to the above in a matter-dominated universe at z >> [/Qn

A feature of some some length | grows in proportion to a, but as the horizon grows as dn
« 32, so larger features come into causal contact with each other at later times

=> we therefore expect the transfer function to depend on QQ,h2and k



Where is the peak in the power spectrum!?

We already found that for y = pm/pr = alaeq that Om « | + (3/2)y
=> Om « constant for a << aeqand Om « a for a >> aq
In the radiation-dominated era perturbation modes with | < dn(zeq) enter the horizon

but O is constant.

In the matter-dominated era modes with | > dn(zeq) enter and O « a and thus O grows.

=> the power spectrum must have a break on the length scale of the horizon at
matter radiation equality:

dh(zeq) ~ 16/(Qmoh?) Mpc k ~ 0.06 Qmoh? Mpc™!

For k < keq (large scales) fluctuations enter the horizon during the matter dominated
era and grow as a preserving the initial power spectrum P(k) « k

For k > keq (small scales) fluctuations enter the horizon during the radiation
dominated era and cannot grow => P(k) « k3



Transfer functions
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Figure 15.1 Examples of adiabatic transfer functions for baryons, hot dark matter (HDM),
cold dark matter (CDM) and mixed dark matter (MDM; also known as CHDM). [socurvatare
modes are also showi. Picture courtesy of John Peacock.



Growth of Structure after Teq

After the matter-radiation equality, the power spectrum grows as P(k) « 02 « a2. The
dependence of keq can be used to constrain Qn,

A?(k) « k4for small k and A?(k) « kO for large k

=> hierarchical structure formation where smaller over densities go non-linear first
and collapse earlier.

The baryon acoustic oscillations are superimposed on the dark-matter fluctuations.



Adiabatic Perturbations

In what form do fluctuations in the radiation/matter energy density take! How large are
fluctuations in matter relative to fluctuations in radiation and also in the temperature!?

Before recombination, the baryons and the radiation were tightly coupled. The entropy per unit
mass in a volume has a very high value because of the large value of G4 (entropy per baryon).

We discussed earlier that the value of G4 might be related to the microscopic physics of a GUT
or electroweak phase transition; if that is correct, then we expect fluctuations to have the same
value for Or.q => we expect adiabatic perturbations.

=> entropy is carried almost entirely by radiation
S = (4/3)0T3V « Orad =« T3/Pm « Pr3/4/pm Orad = 4mp0+ T3/3kepPm

An adiabatic perturbation leaves S invariant and consists of fluctuations in both pmand pr such that
65/5 - 0 - 60-rad/0-rad - (3/4) apr/pr_ apm/pm - 3 6T/T - 6pm/pm

6m = 6pm/pm - 3 6T/T = (3/4) 6pr'/prE 3/4 6r



Measuring the Matter Power Spectrum From Galaxies:
Correlation Function

The two-point correlation function gives the excess probability of finding pairs of

objects at a separation r. It is defined as §(r) = <d(x1)0(x2)> and this is related to the
power spectrum through its Fourier Transform

E(r) = <O(x1)0(x2)> = [ d3k/(2TT)3 ek - x P(k)
The power spectrum has units of lengths and it is convenient to define a dimensionless version:

A2(k) = (41Tk? P(K))/(2TT)3

The primordial power spectrum is P(k) = Akn; if n=1 the model in the Harrison-Zeldovich

spectrum, where fluctuations are scale-
invariant in the gravitational potential ®



