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Layout of the Course

Sep 24: Introduction and Friedmann Equations

Oct |: Fluid and Acceleration Equations

Oct 8: Introductory GR, Space Time Metric, Proper Distance
Oct |5: Redshift, Horizons, Observable Distances

Oct 17: Problem Class #]|

Oct 22: Observable Distances, Parameter Constraints

Oct 29: Thermal History, Early Universe

Nov 5: Early Universe, Inflation

Nov |2: Inflation, Lepton Era, Big Bang Nucleosythesis
Nov 14: Problem Class #2

Nov 19: Recombination, Cosmic Microwave Background Radiation
Dec 3: Introduction to Structure Formation (ll)

Dec 5: Problem Class #3

Dec 10: Finishing Thoughts, Review

Dec 21: Final Exam



Problem set #3 was mailed to
you last week

Due by Friday | 3:30
December 5



Exam will take place 8-11 PM
on December 21

Have you registered!



Review Last Week



Radiative Era

The radiative era begins at the moment of the elimination of the electron
- positron pairs at T ~5x [0 Kort~ 10s

The end of the radiative era occurs when the density of matter coincides
with that of the relativistic particles, corresponding to a redshift:

| + Zeq = (Poc Q0)/(Ko por) ~ 4.3/Kox 104 Q0 h2 ~ 3800 where Ko~ 1.68 if Ny = 3

neutrino density is (7/8)

_ _ (4/11)43 N, = 0.68 times the
Teq = Tor (112eq) = 105 Qo h2/Ko K photon density

At these temperatures, the hydrogen and helium are fully ionized. As the
temperature drops, the number of neutral atoms and He* atoms grows through
the equilibrium reactions:

H*+e = H+Y Het*+ e~ = He*+ Y Het+e- = He+Y

The number density of the individual components is determined through the Saha
equation.



Saha Equation

Let us focus on Hydrogen p* + e — H + Y, the density of various particles

is given by the Boltzmann distribution:
i/ (Mone) = g / (g *+ g0) (M / (mp )2 (KT / 21T/2)-32elMpme-mHIAT
= (mekT / 21172)32eQKT  where Q = 13.6 eV

If x =np/ (np + NH) = np / Nbaryon is the fractional ionization

Then,

(1=x)/x2= 3.84n (kT/mcc2)3/2 eQ/kT where N = Nbaryon / NY

If we define the momentum of recombination as the instant when x=1/2
assuming N = 5.5 x 10719, the recombination temperature is

kT =0.323 eV = Q/42 << 3.6 eV

This is the consequence of having a large number density of photons in
the universe: something similar habbens for deuterium formation
This corresponds to the temperature Trec ~ 3740 K

Zrec ~ |370,
trec = 240,000 years



Photon Decoupling / Saha Equation

Recombination is not instantaneous, but quite rapid: x = 0.9 at z=1475
(H/H0)2= Qmo / a3= Qmo (1+2)3 x = 0.1 at z=1255
At = 70,000 years

Since the number density of free electrons drops rapidly during the epoch
of recombination, the time of photon decoupling comes soon after the time
of recombination.
The rate of photon scattering is [ (z) = ne(z)01 ¢ = x(z)(1+2)3 Nbaryon, 00T C
=>[ =44 x 10721 s x(z)(1+z)3
Atz=0, Ho=25x 10"18s7l =>T(z) <<H so before recombination

At z=1500, expansion rate H(z) << [(z) photons were well

coupled to electrons
When recombination takes place, the universe is matter dominated, so

If Qmo=0.3,H(z) = 1.24 x 1018 s~I (] +z)32

The redshift for photon decoupling is when the expansion rate equals the
scattering rate H = [

=> |+Zdec — 43/X(Zdec)2/3 Zdec = I I3O



Recombination Epoch (z~1 100)

lonized Plasma ——> Neutral Gas

(z > 1100) (z < 1100)
< 380,000 years > 380,000 years
Temperature Temperature
> 3600 K < 3600 K
Hydrogen ionized Hydrogen neutral
Photons Thomson-scattering Almost no free electrons
off of the ionized hydrogen Photons unbound from
plasma

m

P



Power Spectra Derived from Fluctuations in CMB

-- Use the spherical harmonic expansion to construct a power
spectrum to describe anisotropies of the CMB on the sky

Power Spectrum

H1#1) €/ K

.......

EXPanSiOI’]Z Spherical harmonic number ell ~ 180/
o) 14
= : =180/ 6
T(g’ ¢) = ; Z;e angm (9, ¢)

After deriving the aim coefficients from the
data, determine the statistical average

¢o = (|aem|)?




First question: how large can the angle become before the
regions become casually disconnected!?

Here is such a spectrum:
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Sachs-Wolfe (1967)

Question: How do we explain the power spectrum of the anisotropies
that are not casually connected, i.e., beyond the horizon!?

These fluctuations are thought to be quantum fluctuations that are blown up in
an initial inflationary phase of the universe

variation in gravitational potential
=\V2(0) = (411G/c2)0¢
But how do these fluctuations translate into temperature fluctuations?

AV/v~ATIT~d/c?

€pM =EpMm + O&pm (I)

Additional effect of time dilation while ‘
potential evolves (full GR): \ /
\
AT 1A% @
T 3 c?

Photons climbs out of potential minimum, loses energy <> lower temperature

Photons falls out of potential maximum, gains energy < higher temperature



Power

What can we learn from the CMB!?
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What can we learn from acoustic peaks

Ist, 2nd, 3rd peaks correspond to compression, rarefaction,
and compression modes

baryons fall onto over densities in the early universe, but are resisted
by pressure in photon-baryon fluid and continues until decoupling...

for Ist peak, baryons are falling into over densities on a certain

scale when decoupling occurs
FIRST PEAK

Gravity and sonic motion

work together Dark matter

concentration
Z

Photon

motion

Gravitational
e attraction

—

—~—

[Image Credit: Hu & White 2004]



What do we learn from |st peak?

(What can we learn from the angular scale at which is observed?)

-- For this peak, baryonic matter would be falling onto these overdensities
for the first time

-- Length scale spanned by peak is comoving length transversed by a
sound wave to the point of last scattering;

d where GEOMETRY OF THE UNIVERSE
c, dt

IR
LS(IR) = a(tR) f sound s%eed n
0 a(t) CS == ‘,.. & '." _ . "

RN
Py
RSO
/, (/ LS AV
I\ )‘/\/\
| \
[ P}
! |

CLOSED

LS (Z) length scale traversed by
= matter (a standard rod)

0

DA (Z) angular diameter distance

-- Can compute Ls(z) and can measure O (angle of st peak)
-- Can solve for Da (z) and use to constrain geometry of universe



New Material for This VWeek



What about the damping tail?
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What about the damping tail?

-- Decoupling does not happen instantaneously (recall slide near
the beginning of the presentation). This is not so important in
viewing the last scattering surface for larger fluctuations. But for

lonized Plasma

Note finite width
of last scattering
surfacez= 1130

smaller fluctuations, the stuctures will overlap.
Z = 1130

Z =1070 Redshift

Z = 1010

v A pe— oo— o~ . S~ s Rned & ﬂ-«-: i e

6 arcmin

Neutral hydrogen
With smaller structures, projection

effects will play a significant role in
diluting signal




Silk Damping

Even before recombination, matter and radiation are not perfectly coupled: radiation
leaks out of the perturbation, which leads to a dissipation of the perturbation.

This process occurs because photons bounce around (following a random walk) during
recombination; for small scale fluctuations, the hot and cold photons can mix
=> on the scales corresponding to the distances photons can travel, the fluctuations
are damped.

The dissipation scale Ap ~ 2¢(Tye t)!/2 at time t

mean time before Thomson scattering: Tye « ne™! « (1+2)73

Before teq, Ap = (1+2)752 since to (l+z)2

After teq, Ap « (1+2)-91 since t« (1+z)15

The corresponding mass scale is p(z)Ap3, which gives Mp ~ 10/2(Qzh2)=5/4 Mg
at recombination: ~cluster of galaxy scale
Without accounting for this Silk Damping the amplitude of an acoustic wave a mass
scale < Mp would remain constant during radiation domination and decay as « t~!/
after teq; such structures are obliterated by photon diffusion.



(Material taught in the previous version of this course presented in a different
manner here)

For O < B4, the origin of the temperature fluctuations is complicated by the
behavior of the photons and baryons.

The energy density of the photon-baryon fluid is 30% of the DM. lIts equation
of state w is between 0 and |/3. If it enters a potential well, the fluid is
compressed by gravity but then the pressure rises until it is high enough to
cause the fluid to expand outward.

If the baryon-photon fluid at maximum compression in well at decoupling, its
density will be higher than average and as T ~ €!/4, the photons will be hotter
than opposite holds for maximum expansion.

If the the plasma is in the process of expanding or contracting, the Doppler
effect will blue or redshift the photons.

The resulting power spectrum can be computed given the initial conditions for
primordial fluctuations / mix of ingredients.

The location of the highest (first peak) corresponds to the potential well that
just reached maximum compression which have size c/H(zrec). Gives
constraints on curvature ().

The amplitude depends on the sound speed of the plasma ¢s = (Wplasma) /2C
= (), 0<MB ~ 0.04




How polarized is the cosmic
microwave background overall?

most of the CMB light shows no net polarization
however there is a ~10% net polarization

Magnetic field
component
‘ : 1 3
T'he polarsation of the wave
Is the same as the electric field
and in this case it is herizontzal

Electric field
component

Direction of
ravel



Why are photons from the
CMB polarized!?

They are polarized from Thomson scattering

(valid in the limit that photon is much less than
mass energy in the particle)

Thomson photons polarized
> Scattering perpendicular to incidence
e . .
' direction
3

3

A
Linear
Polarization




How can this result in a polarized signal from
the microwave background!?

colder
l radiation

hotter hotter

radlatlon ‘ > ‘ 4_‘ radiation

Net polarization only for a radiation field with a dipole from the
CMB. Photons from highest temperature region dominate
polarization signal



How can this result in a polarized signal from
the microwave background!?

l colder
radiation

Quadrupole ngdrupole
Anisotropy Anisotropy

Thomson Thomson
ho.tt?r —~ ! Scattering —— 4 Scattering
radiation
—

N
Linear

Linear ..
Polarization

Polarization

Net polarization only for a radiation field with a dipole from the
CMB. Photons from highest temperature region dominate
polarization signal



How CMB light can be broken down?

Measure Temperature and Polarization of Light

One tends to break down the polarization map into two modes
(Helmholtz-Hodge theorem)

‘ -
E-modes _\ 5 <o /_ 4 £>0 N E-modes are curl free and
can be written as the
4 ‘ N N gradient of a potential
hot spots cold spots UxE=0
Q=0 UK<KO Q=0 U>0
/ N
B-modes | 7 — T B-modes have no
NN S S divergence.
v T V-B=0
The terms E and B modes simply reflect the general E-modes have their origin in normal
form of the polarization fields and are in analogy with density perturbations such as make

similar fields in electromagnetism. However, they have up the early universe

no direct relation with electric or magnetic fields B-modes are only expected to arise from

gravity waves in early universe (inflation)
and from gravitational lensing (beween us
and the last scattering surface)



But we can also look the TE, EE, and BB
angular power spectra

:

grzwitgational |
; ; lensing .
— gravitational
i \/ waves
“()I i l'\ ] ] 5 1 i
10 100 1000

multipole moment, /

Note that the EE, TE, and BB power spectra are not nearly
as prominent as the TT power spectrum. This is because
only 10% of the light from the CMB is polarized!



How are the TE, EE, and BB power spectra

Using an expansion
of the polarization

field in terms of
spin-2Yim’'s. see
Montroy+2005
(arXiv:0507514)

calculated?

3.1. Power Spectrum Estimation

Both pipelines are polarized extensions of the
Monte Carlo based MASTER method (Hivon
et al. 2002) first used on B98 (Netterfield et al.
2002). These techniques rely on spherical har-
monic transformations done on a partial map of
the sky. For polarization data, the Q and U maps
are expanded as a function of spin-2 spherical
harmonics

(Q +iU)(R) =) _(aly, +iaf,)w2Yim(R), (1)

im

where af/, and af?  are the coefficients for E-mode

and B-mode polarization respectively. These co-
efficients can be calculated in a manner similar to
Legendre transformations,

o, = 5 [ AW @@+ iU)@)Yin (2

+(Q = iU)(7) -2Yim(7)], @
o= / AW (7)](Q + i) (1) 42Yim ()
—(Q = iU)(@)-2Yim(7)], 3)

where W (1) is an arbitrary weighting function and
the integral extends only over the observed portion
of the sky. From these transforms, we can build
three observables:

1
EE — E 2A 4
i CYY ;‘a/m‘ ) (4)
1 .
BB _ B |2
CI‘ - 20+ 1 ZI: ‘alm‘ ’ (5)
. 1 .
CEE — oE 4B (6)

PYSED Im@m >
20+ 1 7

where CPP the E-mode power spectrum, CPP
the B-mode power spectrum, and CEB the cross-
correlation between E-mode and B-mode polariza-
tion. C(EB is expected to be zero if parity is pre-
served in the early universe. Our estimates of the
cross-correlations between temperature and polar-
ization (C® and Cf®) are discussed in Piacentini
et al. (2005).

For spherical harmonic transforms done on the
cut sky the measure ofNC/ is biased; we describe
them as pseudo-Cy’s (Cy). For the polarization

power spectra, the relationships between full-sky
Cy and Cy are expressed as

CF" =Y [+ K FEP B3 CE"

-
+KwFPPBLCRP| £ NP5, ()
o=y [g{w FEPB2CE
-
+ Ko FﬁEBf,CEE} + NP8, (8)
CrP = Z {+Kw - 7KNI}F£BB§,CE,B
-
+ NEB, ©)

where Cf,(y represents the full-sky power spec-
trum, By is the beam window function, F/XY is the
transfer function measured by signal-only Monte
Carlo simulations, NV, Z(Y is the noise bias measured
by noise-only Monte Carlo simulations, 4Ky is
the primary coupling kernel and _ Ky, describes
the geometric leakage between E-modes and B-
modes (Chon et al. 2004). Both pipelines use
roughly 500 Monte Carlo simulations of signal-
only and noise-only data streams to estimate the
signal transfer function and noise bias respectively.
A similar number of signal+noise simulations can
be used to estimate the uncertainty on the spectral
estimate and check for bias in the pipeline.

Since we observe a small portion of the sky, we
are not able to measure individual multipole mo-
ments. Instead, we parameterize the power spec-
trum as a piecewise continuous function

CXY = XV CXY (10)

where qi(y is the bandpower deviation over a
range (Af), and C[(s)xy is a shape parameter.
Common choices for the shape parameter are those
that keep C[(S) constant over the band, those that
keep (€ + 1)C£S)/(2ﬂ') constant over the band
(i.e. the flattened spectrum) or those that rep-
resent a theoretically motivated power spectrum
(e.g. ACDM concordance model). The choice of
parameterization depends in part on the nature of
the expected signal and the noise in the maps.
The output bandpower CXY (C, = £( +



First detection of polarization in CMB

-- DASI South Pole experiment
(interferometer) first to detect E
mode polarization (2002)

-- This was followed by WMAP

reporting a measure of the C+e

power spectrum at low angular
scales

Map is 5 degroes square

-- Measurements of the E-mode . .
. . . interferometer: collect
polarization also made with coherent signals over certain

CARMAP MAXIPOL, and QUAD angular scale on sky

Direction to

//

Con' lator

DASI in South Pole

‘ Credit; Basu
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It is interesting that we can actually test
whether our understanding of the
polarization of CMB is correct

Around cold or hot spots, we expect a
certain structure to the polarization signal



Can test this by looking at the polarization signal
around hot or cold spots in the observations.

From theory

Temperature Polarization

Simulation
Hot Spot
Simulation




Evidence for super horizon fluctuations

6000 rrrm—r——rrrrr . —
' ' ' ' This TE anti-

5000 | correlation 1s the
& best evidence for
< 4000 |- )
= the existence of
% 3000 |- super horizon
= fluctuations, a key
T 2000 |
= element of the

1000 | Acoustic scale, 0.6° standard model.

2.6 _'7"1111“; | B B | Ili T T i T L ; 1

& Horizon scale, -
= g
B -
N -
= -
o -
T :
= =
1.0 Bl 4 v i N TR S Spergel & Zaldarriaga (1997)
10 100 500 1000 Peiris et al. (2003)

Multipole moment 1 Bennett et al. 2013




Significant BB signal detected by BICEP |I!
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BICEP2 results show a positive detection of BB modes. Attempted fit
to gravity waves from inflation... Lensing contributes at small scales



Gravitational instability




Growth of Structure

We start with tiny fluctuations in the background radiation temperature, which are
related to density fluctuations. These grow into the very clustered universe we see
today. We therefore need to study the density perturbations.

Gravitational Jeans Instability: Jeans showed that starting from a homogeneous and isotropic
“mean” fluid, small fluctuations in the density dp and velocity dv can evolve with time.

The simple criterion to decide whether a fluctuation will grow with time is that the
typical length scale of a fluctuation should be larger than the Jeans length A,

Consider a static, homogeneous matter-only Universe in which there is a spherical
region that is overdense:

o(t) = (p — P)/p << |
d2R/dt2 = ~G(AM)/R2 = -G((4/3)rR3pd)/R2

d2R/dt2/ R = —(41/3)Gpd

Hence, a mass excess O > 0 will cause the sphere to collapse

Conservation of mass gives M = (411/3)p[1+0(t)]JR(t)? = constant during collapse



Growth of Structure

Conversation of mass gives M = (411/3)p[ | +0(t)]R(t)3 = constant during collapse
R(t) = Ro[1+0]"'/3 where Ro = (3M/4T1Tp)!/3
If & << I, then R(t) = Ro[I—-(1/3)0(t)] => d2R/dt2 = —(1/3)Rod20/dt2

mass conservation yields ==> d2R/dt2 = —(1/3)Rod20/dt2 (0<<I)

d2d/dt2 = 41TGp_6 which has solutions & = A et/tdyn + A,e-t/tdyn

where tayn = 1/(4TTGp) 2 is the dynamical time for collapse

If the overdense sphere starts at rest, dd/dt = 0 at t=0 => A; = A, = 8(0)/2. After a few
dynamical times, only the growing mode matters — the fluctuations grow exponentially with time.

However, as the sphere collapses, pressure will build up. When a sphere is compressed by its
own gravity, a pressure gradient will build up to counter the effects of gravity (e.g., in a star)

If the pressure gradient balances gravity, we have hydrostatic equilibrium.

The pressure gradient steepening takes time: any change in pressure travels with the
speed of sound cs; therefore the time to build up a pressure gradient is a sphere of

radius R is pressure ~ R/c;
¢ = ¢ (dP/dp)!12 = w2 ¢



Growth of Structure

For hydrostatic equilibrium to develop the gradient must build up before collapse:

R/cs = Cpressure < tdyn = (G P)"”Z =>R < Cstdyn = Cs/(Gf_))I/Z = >\J
Jeans Length
A more accurate derivation yields Aj = ¢s(TT/Gp)!/2 = 2TT¢; tdyn

Consider a spatially flat Universe with mean density p => |/H = (3/81‘rG(_))”2=(3/2)”2 tdyn

= 1.22 tdyn
The Jeans length in an expanding universe will then be

N = 2TTcstayn = 217(2/3) 12¢s/H
If we now focus on one component with equation of state w and ¢s = (w)!/2 ¢
N = 2TTCstayn = 2TT(2/3) 12 w!2 ¢/H
For a photon gas, ¢ = ¢/3!2~0.58c => A} = 2TTcstayn = 277 212 ¢/3H ~ 3c¢/H

Density fluctuations in the radiative component will be pressure supported if they are
smaller than 3 times the Hubble radius

Such fluctuations will oscillate. Only larger ones will collapse.

A universe containing only radiation will have density fluctuations A; < 3c/H but they
produce sound waves.

To get collapsed structures, we need a non-relativistic component with w!/2 << |



Growth of Structure

Prior to decoupling, the baryons were coupled to the photons => no collapse possible

At C/H(Zrec) ~ 0.2 MPC and &y = |4 Ebaryon
=> )\ (before decoupling) = 3c/H(zrec) = 0.6 Mpc

baryon Jeans mass before decoupling =7 x 10!8 Mgy,
30,000x coma cluster

After decoupling, we have two separate gases: for baryons, the sound speed drops to

S b = (kT/ N 1/2 kT = 0.26 eV
¢ (baryon) = (kT/mc?) c mc2 = 122 mp 2 = | 140 MeV
¢s (baryon) = (1.5 x 10=3)c or 5 km/s Y =0.24

Then, after decoupling, the Jeans length decreased by a factor of cs(baryon)/cs(photon) ~ 2.6 x 10>

much smaller than the mass of our galaxy,

~ 105
M, (after) ~ 10> Msonr ~baryonic mass of the smallest dwarf galaxies

After decoupling, baryon density perturbations could start growing.



Growth of Structure

We can study the Jeans theory in a bit more detail, focusing first on the collisional fluids.
The equations of motion are in the Newtonian approximation:

op/ldt+V - (pv) =0 continuity equation
ov/iot+ (v - V)v+ (l/p)P+ VD=0 Euler equation
V2o -411Gp =0 Poisson’s Equation

We will also neglect any dissipative terms arriving from viscosity or Thermal conductivity.
Therefore, we have conservation of entropy per unit mass:

0S/ot+v - VS=0
A trivial solution is the following: p = po,v =0,S = So,p = po, VP =0

Note that if p = po # 0, then ® must vary spatially => homogeneous distribution of p cannot
be stationary, similar to what we saw when we derived the Friedmann equation

Although the derivation is formally incorrect, the results are qualitatively unchanged and the
results can be “reinterpreted” to give correct results.

p = po+ 0p, v = dv, p=po+0p S=S0+3S ® = do+ 5
00p/dt + poV - (0V) =0
0dv/0t + (1/po)(dp/dp)sV 8p + (1/po)(dp/ds),V s + VO =0
V20 - 411Gop =0 00S/0t=0



Modeling the Growth of Structure using Waves in Fluid

We will look for solution in the form of plane waves du; = O; ek - r where Ou; = dp, dv, 0, Os

Given that the unperturbed solution do not depend on position, we can search for solutions:
i(t) = Oo, eiwt amplitude D,V, ®, >

Use that ¢s = (OP/0p)sand 0o = D/po

=> k2 ® + 4TTGpodo = 0

=>w2=0

=>wotk V=0
=>wV+kc2d+ k/p (dp/ds)p 2 + kP =0
Let us consider solutions with w # 0 => 2 = 0: perturbations are adiabatic

Also, k - V # 0, we can decompose into components parallel and perpendicular to V

k perpendicular to V => 8o = 0, ® = 0, these vertical models do not imply a density perturbation.

K is parallel toV  =>w 0o+ kV =0 w k O 0o 0
=> WV + ke2 00 + kP =0 ( kes2 Wk )(V) — (0)
=> 2 ® + 4TTIGpodo =0 4TtGpo 0 k2 ¢ 0

This admits a non-zero solution for 0o,V, ® if and only if its determinant vanishes => w and k
must satisfy the dispersion relation

=> w2 - c2 k2 + 4TIGpo =0



Modeling the Growth of Structure using Waves in Fluid

The solutions are of two types, depending on whether A = 211/k larger or smaller than
N = ¢ (TT/Gpo) 2

In the case that A < A\;, the value of W is real and W = tcs k[ 1 —(A/N\))2]!2

These represent two sound waves in directions Kk with a dispersion W

If A > A\, the frequency is imaginary: W = + i (4TTGPo) 2 [1-(\/A)2] 12

and the solution for the density is dp/po = 0o elkr etwt

The characteristic time scale for the evolution of the amplitude is
T =w"! = 1/(4TTGpo)' 2 [I=(NJ/N)2]~'72

for A >> A, this corresponds to the dynamical or free-fall time.



