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Layout of the Course

Sep 24:  Introduction and Friedmann Equations
Oct 1:   Fluid and Acceleration Equations
Oct 8:   Introductory GR, Space Time Metric, Proper Distance
Oct 15: Redshift, Horizons, Observable Distances
Oct 17: Problem Class #1
Oct 22: Observable Distances, Parameter Constraints
Oct 29:  Thermal History, Early Universe
Nov 5: Early Universe, Inflation
Nov 12: Inflation, Lepton Era, Big Bang Nucleosythesis
Nov 14: Problem Class #2
Nov 19: Recombination, Cosmic Microwave Background Radiation
Nov 26: CMB Radiation (II), Introduction to Structure Formation
Dec 3: Introduction to Structure Formation (II)
Dec 5: Problem Class #3
Dec 10: Finishing Thoughts, Review 
Dec 21: Final Exam



Problem set #3 was mailed to 
you last week

Due by Friday 13:30
December 5



Exam will take place 8-11 PM
on December 21

Have you registered?



Review Last Week



Radiative Era

The radiative era begins at the moment of the elimination of the electron 
- positron pairs at T ~ 5 x 109 K or t ~ 10 s

The end of the radiative era occurs when the density of matter coincides 
with that of the relativistic particles, corresponding to a redshift:

Teq = T0,r (1+zeq) = 105 Ω0 h2 /K0 K

At these temperatures, the hydrogen and helium are fully ionized.  As the 
temperature drops, the number of neutral atoms and He+ atoms grows through 

the equilibrium reactions:

He++ + e−  ⇌ He+ + Υ He+ + e−  ⇌ He + ΥH+ + e−  ⇌ H + Υ
The number density of the individual components is determined through the Saha 

equation.

1 + zeq = (ρ0,c Ω0)/(K0 ρ0,r) ~ 4.3/K0 x 104 Ω0 h2 ~ 3800 where K0 ~ 1.68 if Nν = 3

neutrino density is (7/8)
(4/11)4/3 Nν = 0.68 times the 

photon density



Saha Equation

Let us focus on Hydrogen p+ + e− ⇌ H + Υ, the density of various particles

is given by the Boltzmann distribution:

nH / (npne) = gH / (gp + ge) (mH / (mp me))3/2 (kT / 2πℏ2)−3/2e[mp+me−mH]/kT

= (mekT / 2πℏ2)−3/2eQ/kT     where  Q = 13.6 eV
If x = np / (np + nH) = np / nbaryon is the fractional ionization

(1−x)/x2 = 3.84η (kT/mec2)3/2  eQ/kT

Then, 

where η = nbaryon / nΥ

If we define the momentum of recombination as the instant when x=1/2 
assuming η = 5.5 x 10−10, the recombination temperature is 

kT = 0.323 eV = Q/42 << 13.6 eV

This is the consequence of having a large number density of photons in 
the universe; something similar happens for deuterium formation

This corresponds to the temperature Trec ~ 3740 K
zrec ~ 1370, 

trec = 240,000 years



Photon Decoupling / Saha Equation

Recombination is not instantaneous, but quite rapid: x = 0.9 at z=1475
x = 0.1 at z=1255
Δt = 70,000 years

Since the number density of free electrons drops rapidly during the epoch 
of recombination, the time of photon decoupling comes soon after the time 

of recombination.

The rate of photon scattering is Γ(z) = ne(z)σT c = x(z)(1+z)3 nbaryon,0σT c

=> Γ = 4.4 x 10−21 s−1 x(z)(1+z)3

At z=0,   H0 = 2.5 x 10−18 s−1   => Γ(z) << H
At z=1500,   expansion rate H(z) << Γ(z)

so before recombination 
photons were well 

coupled to electrons

If Ωm,0 = 0.3, H(z) = 1.24 x 10−18 s−1 (1+z)3/2

The redshift for photon decoupling is when the expansion rate equals the 
scattering rate H = Γ:

=> 1+zdec = 43/x(zdec)2/3 zdec = 1130

(H/H0)2 = Ωm,0 / a3 = Ωm,0 (1+z)3

When recombination takes place, the universe is matter dominated, so



(z > 1100)
< 380,000 years

(z < 1100)

> 380,000 years

Temperature 
> 3600 K

Temperature 
< 3600 K

Hydrogen neutral

Almost no free electrons

Photons unbound from 
plasma

Hydrogen ionized

Photons Thomson-scattering 
off of the ionized hydrogen 

Recombination Epoch (z~1100)

Ionized Plasma Neutral Gas

photon
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Spherical harmonics
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Power Spectra Derived from Fluctuations in CMB 

-- Use the spherical harmonic expansion to construct a power 
spectrum to describe anisotropies of the CMB on the sky
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CMB power spectrum

26

Use spherical harmonics in place of sine waves:

Calculate coefficients, alm, and then the statistical 
average:

Amplitude of fluctuations on each scale ! that’s what we plot.

Power Spectrum
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CMB power spectrum
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Use spherical harmonics in place of sine waves:

Calculate coefficients, alm, and then the statistical 
average:

Amplitude of fluctuations on each scale ! that’s what we plot.

Expansion:
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CMB power spectrum
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Use spherical harmonics in place of sine waves:

Calculate coefficients, alm, and then the statistical 
average:

Amplitude of fluctuations on each scale ! that’s what we plot.

After deriving the alm coefficients from the 
data, determine the statistical average

l = 180 / θ
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Power spectrum
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Sachs-Wolfe
plateau

Here is such a spectrum:
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First question: how large can the angle become before the 
regions become casually disconnected?

Hubble length at last scattering surface
is the casual horizon:



Question: How do we explain the power spectrum of the anisotropies 
that are not casually connected, i.e., beyond the horizon?

Sachs-Wolfe (1967)

These fluctuations are thought to be quantum fluctuations that are blown up in 
an initial inflationary phase of the universe

04.2.26 Chris Pearson :   Observational Cosmology 2: The Cosmic Background - ISAS -2004

19

THE COSMIC BACKGROUND

2.3: Observations of the CMB2.3: Observations of the CMB
Horizons and Fluctuations: Sachs-Wolfe Effect

Scales of *>1o outside horizon 

!fluctuations from inflation

! Gravitational effect of primordial density fluctuations

! 

"2#$ = 4%G#& '
4%G

c
2
#(

Fluctuations in density ! fluctuations in gravitational potential ! Gravitational Wells

Poisson eqn

At  surface of last scattering:

Red spots - higher temperature - potential maxima

Blue spots - lower temperature - potential minima

• Photon a local potential minima (bottom of well) has to climb out ! lose energy ! Redshift

•Photon a local potential maxima (top of well) falls in ! gain energy ! Blueshift

! 

"T

T
=
1

3
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SACHS - WOLFE EFFECT (1967)
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Sachs-Wolfe effect

34

Secondary integrated Sachs-Wolfe effect after recombination: photon falls 
in potential well, gains energy; photon climbs out, loses energy

No net change in energy, unless the potential changes while the photon 
is inside (late ISW).

Δν/ν ~ Δ T/T ~ Φ/c2

Additional effect of time dilation while 
potential evolves (full GR):

For power-law index of primary density perturbations (ns=1, Harrison-
Zel’dovich spectrum), the Sachs-Wolfe effect produces a flat power 
spectrum: Cl

SW
 ~ 1/l(l+1) 

Photons climbs out of potential minimum, loses energy ↔ lower temperature

Photons falls out of potential maximum, gains energy ↔ higher temperature

variation in gravitational potential 
⇒▽2(δφ) = (4πG/c2)δε

But how do these fluctuations translate into temperature fluctuations?

εDM = εDM + δεDM (r)
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Acoustic
peaks

Damping
tail

Sachs-Wolfe
plateau

Power
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What can we learn from the CMB?
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What can we learn from acoustic peaks

1st, 2nd, 3rd peaks correspond to compression, rarefaction, 
and compression modes

baryons fall onto over densities in the early universe, but are resisted 
by pressure in photon-baryon fluid and continues until decoupling…

Ian M. George                                                      PHYS 416 (2011 Spring)    Meeting 19 

[Image Credit: Hu & White 2004] 

for 1st peak, baryons are falling into over densities on a certain 
scale when decoupling occurs



What do we learn from 1st peak?

-- For this peak, baryonic matter would be falling onto these overdensities 
for the first time

(What can we learn from the angular scale at which is observed?)

-- Length scale spanned by peak is comoving length transversed by a 
sound wave to the point of last scattering:

AS 4022  Cosmology

Sound Horizon at z = 1100
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 recombination

at    z = 1100

 keep 2 largest terms.

H( x ) from Friedmann Eqn.

dt = - dx / x H( x )

R( t ) = R0  / x
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 recombination

at    z = 1100

 keep 2 largest terms.

H( x ) from Friedmann Eqn.

dt = - dx / x H( x )

R( t ) = R0  / x

sound speed
where

a(tR)
a(t)
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Angular scale depends mainly

on the curvature.

Gives "  ~ 0.8o  for flat geometry,

!0 = !M +!# =1
0.8o

1.0o

0.6o

angular diameter distance

length scale traversed by 
matter (a standard rod)

-- Can compute LS(z) and can measure θ (angle of 1st peak)
-- Can solve for DA (z) and use to constrain geometry of universe

Angular'diameter'distance'

The'observed'angles'depend'on'geometry'and'the'distance'to'the'
surface'of'last'scaDering.''



New Material for This Week
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Acoustic
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What about the damping tail?



What about the damping tail?

-- Decoupling does not happen instantaneously (recall slide near 
the beginning of the presentation).  This is not so important in 

viewing the last scattering surface for larger fluctuations.    But for 
smaller fluctuations, the stuctures will overlap.

LMU Lecture  Observational Cosmology II   (§ 4)        SS 2010     
40 H. Böhringer 40 

Projection Effects at the Last Scattering 
Surfcae 

When the fluctuation 

become smaller than 

the width of the last 

scattering surface, 

projection effects 

dilute the signal by: "

!!decrease of the 

peak amplitudes (at 

scales < few arcmin)"

At even smaller 

scales Silk 

Damping !!"

Neutral hydrogen

Ionized Plasma

With smaller structures, projection 
effects will play a significant role in 

diluting signal

Note finite width 
of last scattering 
surface z = 1130 

to 1010

Redshift



Silk Damping

Even before recombination, matter and radiation are not perfectly coupled: radiation 
leaks out of the perturbation, which leads to a dissipation of the perturbation.

This process occurs because photons bounce around (following a random walk) during 
recombination; for small scale fluctuations, the hot and cold photons can mix 

=> on the scales corresponding to the distances photons can travel, the fluctuations 
are damped.

The dissipation scale λD ~ 2c(τΥe t)1/2  at time t

mean time before Thomson scattering: τΥe ∝ ne−1 ∝ (1+z)−3

Before teq, λD ∝ (1+z)−5/2 since  t ∝ (1+z)−2

The corresponding mass scale is ρ(z)λD3,  which gives MD ~ 1012(Ωmh2)−5/4 Msol

at recombination: ~cluster of galaxy scale

Without accounting for this Silk Damping the amplitude of an acoustic wave a mass 
scale < MD would remain constant during radiation domination and decay as ∝ t−1/6 

after teq; such structures are obliterated by photon diffusion.

After teq,             λD ∝ (1+z)−9/4 since  t ∝ (1+z)−1.5



For θ < θH,  the origin of the temperature fluctuations is complicated by the 
behavior of the photons and baryons.

The energy density of the photon-baryon fluid is 30% of the DM.  Its equation 
of state w is between 0 and 1/3.  If it enters a potential well, the fluid is 

compressed by gravity but then the pressure rises until it is high enough to 
cause the fluid to expand outward.

If the baryon-photon fluid at maximum compression in well at decoupling, its 
density will be higher than average and as T ∝ ε1/4, the photons will be hotter 

than opposite holds for maximum expansion.
If the the plasma is in the process of expanding or contracting, the Doppler 

effect will blue or redshift the photons.

The resulting power spectrum can be computed given the initial conditions for 
primordial fluctuations / mix of ingredients.

The location of the highest (first peak) corresponds to the potential well that 
just reached maximum compression which have size c/H(zrec).   Gives

constraints on curvature Ωk.

The amplitude depends on the sound speed of the plasma  cs = (ωplasma)1/2c
⇒ Ωb,0CMB ~ 0.04

(Material taught in the previous version of this course presented in a different 
manner here)



How polarized is the cosmic 
microwave background overall?
most of the CMB light shows no net polarization

however there is a ~10% net polarization



Why are photons from the 
CMB polarized?

They are polarized from Thomson scattering 
(valid in the limit that photon is much less than

mass energy in the particle)

photons polarized 
perpendicular to incidence 

direction



How can this result in a polarized signal from 
the microwave background?

Net polarization only for a radiation field with a dipole from the 
CMB.   Photons from highest temperature region dominate 

polarization signal

hotter
radiation

colder
radiation

Hans Böhringer LMU Lecture Observational Cosmology II (§ 5)        SS 2010     14

Polarization Originates in Quadrupole Moments 
of the Photon Distribution

The regions of largest intensity (T) dominate the polarization direction. The
polarization is strongest when the photon flux is highest between the peaks, 
this is not at the moment of the highets peak amplitude, but in between the
maxima: the E-polarization maxima are out of phase with the T-maxima.

hotter
radiation



How can this result in a polarized signal from 
the microwave background?

hotter
radiation

colder
radiation

Net polarization only for a radiation field with a dipole from the 
CMB.   Photons from highest temperature region dominate 

polarization signal



How CMB light can be broken down?
Measure Temperature and Polarization of Light

One tends to break down the polarization map into two modes 
(Helmholtz-Hodge theorem)

E-modes

B-modes

E-modes are curl free and 
can be written as the 
gradient of a potential 

B-modes have no 
divergence. 

• We can break down the polarization 
field into two components which 
we call E and B modes. This is the 
spin-2 analog of the gradient/curl 
decomposition of a vector field.

• E modes are generated by density 
(scalar) perturbations via Thomson 
scattering.

• B modes are generated by gravity 
waves (tensor perturbations) at last 
scattering or by gravitational 
lensing (which transforms E modes 
into B modes along the line of sight 
to us) later on. 
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E and B modes
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E-mode

B-mode

Two flavors of CMB polarization:

Density perturbations: curl-free, “E-mode”
Gravity waves: curl, “B-mode”

cold spotshot spots

∇⋅B = 0

∇ × E = 0

E-modes have their origin in normal 
density perturbations such as make 

up the early universe

B-modes are only expected to arise from 
gravity waves in early universe (inflation) 
and from gravitational lensing (beween us 

and the last scattering surface)

The terms E and B modes simply reflect the general 
form of the polarization fields and are in analogy with 
similar fields in electromagnetism.  However, they have 

no direct relation with electric or magnetic fields



But we can also look the TE, EE, and BB 
angular power spectra

Note that the EE, TE, and BB power spectra are not nearly 
as prominent as the TT power spectrum.  This is because 

only 10% of the light from the CMB  is polarized!



How are the TE, EE, and BB power spectra 
calculated?

3.1. Power Spectrum Estimation

Both pipelines are polarized extensions of the
Monte Carlo based MASTER method (Hivon
et al. 2002) first used on B98 (Netterfield et al.
2002). These techniques rely on spherical har-
monic transformations done on a partial map of
the sky. For polarization data, the Q and U maps
are expanded as a function of spin-2 spherical
harmonics

(Q ± iU)(n̂) =
∑

lm

(aE
lm ± iaB

lm)±2Ylm(n̂), (1)

where aE
lm and aB

lm are the coefficients for E-mode
and B-mode polarization respectively. These co-
efficients can be calculated in a manner similar to
Legendre transformations,

aE
lm =

1

2

∫
dΩW (n̂)

[
(Q + iU)(n̂)+2Ylm(n̂)

+ (Q − iU)(n̂)−2Ylm(n̂)
]
, (2)

aB
lm =

1

2i

∫
dΩW (n̂)

[
(Q + iU)(n̂)+2Ylm(n̂)

− (Q − iU)(n̂)−2Ylm(n̂)
]
, (3)

where W (n̂) is an arbitrary weighting function and
the integral extends only over the observed portion
of the sky. From these transforms, we can build
three observables:

CEE
ℓ =

1

2ℓ + 1

∑

ℓ

|aE
lm|2, (4)

CBB
ℓ =

1

2ℓ + 1

∑

ℓ

|aB
lm|2, (5)

CEB
ℓ =

1

2ℓ + 1

∑

ℓ

aE
lmaB∗

lm , (6)

where CEE
ℓ the E-mode power spectrum, CBB

ℓ
the B-mode power spectrum, and CEB

ℓ the cross-
correlation between E-mode and B-mode polariza-
tion. CEB

ℓ is expected to be zero if parity is pre-
served in the early universe. Our estimates of the
cross-correlations between temperature and polar-
ization (CTE

ℓ and CTB
ℓ ) are discussed in Piacentini

et al. (2005).

For spherical harmonic transforms done on the
cut sky the measure of Cℓ is biased; we describe
them as pseudo-Cℓ’s (C̃ℓ). For the polarization

power spectra, the relationships between full-sky
Cℓ and C̃ℓ are expressed as

C̃EE
ℓ =

∑

ℓ′

[
+Kℓℓ′F

EE
ℓ′ B2

ℓ′C
EE
ℓ′

+ −Kℓℓ′F
BB
ℓ′ B2

ℓ′C
BB
ℓ′

]
+ ÑEE

ℓ , (7)

C̃BB
ℓ =

∑

ℓ′

[
+Kℓℓ′F

BB
ℓ′ B2

ℓ′C
BB
ℓ′

+ −Kℓℓ′F
EE
ℓ′ B2

ℓ′C
EE
ℓ′

]
+ ÑBB

ℓ , (8)

C̃EB
ℓ =

∑

ℓ′

[
+Kℓℓ′ − −Kℓℓ′

]
FEB

ℓ′ B2
ℓ′C

EB
ℓ′

+ ÑEB
ℓ , (9)

where CXY
ℓ represents the full-sky power spec-

trum, Bℓ is the beam window function, FXY
ℓ is the

transfer function measured by signal-only Monte
Carlo simulations, ÑXY

ℓ is the noise bias measured
by noise-only Monte Carlo simulations, +Kℓℓ′ is
the primary coupling kernel and −Kℓℓ′ describes
the geometric leakage between E-modes and B-
modes (Chon et al. 2004). Both pipelines use
roughly 500 Monte Carlo simulations of signal-
only and noise-only data streams to estimate the
signal transfer function and noise bias respectively.
A similar number of signal+noise simulations can
be used to estimate the uncertainty on the spectral
estimate and check for bias in the pipeline.

Since we observe a small portion of the sky, we
are not able to measure individual multipole mo-
ments. Instead, we parameterize the power spec-
trum as a piecewise continuous function

CXY
ℓ = qXY

b C(S)XY
ℓ , (10)

where qXY
b is the bandpower deviation over a

range (∆ℓ)b and C(S)XY
ℓ is a shape parameter.

Common choices for the shape parameter are those

that keep C(S)
ℓ constant over the band, those that

keep ℓ(ℓ + 1)C(S)
ℓ /(2π) constant over the band

(i.e. the flattened spectrum) or those that rep-
resent a theoretically motivated power spectrum
(e.g. ΛCDM concordance model). The choice of
parameterization depends in part on the nature of
the expected signal and the noise in the maps.

The output bandpower CXY
b (Cℓ = ℓ(ℓ +

5

Using an expansion 
of the polarization 
field in terms of 
spin-2 Ylm’s.   see 
Montroy+2005 
(arXiv:0507514)
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Properties of interferometers that make them 
ideally suited for CMB observation:

• Automatic subtraction of the mean signal

• Intrinsically stable (no skynoise)

• Beamshape is easy to obtain (and is not 
as important as in single dish observations)

• Direct measurement of visibilities (which 
are very nearly the Fourier transform of sky 
brightness distribution)

• Precision radiometry and polarimetry

• Repeated baselines allow variety of 
instrumental checks

First detection of polarization in CMB
• The DASI experiment at the South Pole 

was the first to detect E-mode CMB 
polarization

• It was followed by WMAP’s measurement 
of CTE(l) for l<500

 
• Both the BOOMERANG and the CBI 

experiments have reported 
measurements of CTT, CTE , CEE and a 
non-detection of B modes

• E-mode has also been measured by 
CAPMAP and Maxipol

• B-mode polarization has not been 
detected yet (current noise level is 50 K 
at the arcmin scale, future ground-
based experiment will go down to 5 K)
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Detection of polarization
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DASI collaboration, 2002

-- DASI South Pole experiment 
(interferometer) first to detect E 

mode polarization (2002)

-- This was followed by WMAP 
reporting a measure of the CTE 
power spectrum at low angular 

scales

-- Measurements of the E-mode 
polarization also made with 

CARMAP, MAXIPOL, and QUAD

Observational Cosmology Lecture 3 (K. Basu):  CMB spectrum and anisotropies

Interferometers
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DASI in South Pole                             CBI in Atacama desert

Coherent receivers: Can be configured 
so that the output is the correlation of 
two input signals.
HEMT (High Electron Mobility 
Transistor) allow coherent amplification 
with low noise and high gain.

interferometer: collect 
coherent signals over certain 

angular scale on sky

DASI 2002

Credit: Basu



TT, TE, EE spectra derived from Planck
TE spectrum

EE spectrum

Planck Collaboration: Cosmological parameters
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best-fit temperature-to-polarization leakage model of Eqs. (11a) and (11b), fitted separately to the T E and EE spectra.
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sults to the likelihood methodology by developing several in-
dependent analysis pipelines. Some of these are described in
Planck Collaboration XI (2015). The most highly developed of
these are the CamSpec and revised Plik pipelines. For the
2015 Planck papers, the Plik pipeline was chosen as the base-
line. Column 6 of Table 1 lists the cosmological parameters for
base ⇤CDM determined from the Plik cross-half-mission like-
lihood, together with the lowP likelihood, applied to the 2015
full-mission data. The sky coverage used in this likelihood is
identical to that used for the CamSpec 2015F(CHM) likelihood.
However, the two likelihoods di↵er in the modelling of instru-
mental noise, Galactic dust, treatment of relative calibrations and
multipole limits applied to each spectrum.

As summarized in column 8 of Table 1, the Plik and
CamSpec parameters agree to within 0.2�, except for ns, which
di↵ers by nearly 0.5�. The di↵erence in ns is perhaps not sur-
prising, since this parameter is sensitive to small di↵erences in
the foreground modelling. Di↵erences in ns between Plik and
CamSpec are systematic and persist throughout the grid of ex-
tended ⇤CDM models discussed in Sect. 6. We emphasise that
the CamSpec and Plik likelihoods have been written indepen-
dently, though they are based on the same theoretical framework.
None of the conclusions in this paper (including those based on

the full “TT,TE,EE” likelihoods) would di↵er in any substantive
way had we chosen to use the CamSpec likelihood in place of
Plik. The overall shifts of parameters between the Plik 2015
likelihood and the published 2013 nominal mission parameters
are summarized in column 7 of Table 1. These shifts are within
0.71� except for the parameters ⌧ and Ase�2⌧ which are sen-
sitive to the low multipole polarization likelihood and absolute
calibration.

In summary, the Planck 2013 cosmological parameters were
pulled slightly towards lower H0 and ns by the ` ⇡ 1800 4-K line
systematic in the 217 ⇥ 217 cross-spectrum, but the net e↵ect of
this systematic is relatively small, leading to shifts of 0.5� or
less in cosmological parameters. Changes to the low level data
processing, beams, sky coverage, etc. and likelihood code also
produce shifts of typically 0.5� or less. The combined e↵ect of
these changes is to introduce parameter shifts relative to PCP13
of less than 0.71�, with the exception of ⌧ and Ase�2⌧. The main
scientific conclusions of PCP13 are therefore consistent with the
2015 Planck analysis.

Parameters for the base ⇤CDM cosmology derived from
full-mission DetSet, cross-year, or cross-half-mission spectra are
in extremely good agreement, demonstrating that residual (i.e.
uncorrected) cotemporal systematics are at low levels. This is
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Measurement of EE and BB modes
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Polarization measure-
ment is PLANCK’s holy 
grail (next lecture)

TE power

EE power

WMAP PLANCK

Measurement of the BB power spectrum!

Credit: Planck bluebook

BB spectrum (no measurements quoted after first year day)



It is interesting that we can actually test 
whether our understanding of the 

polarization of CMB is correct

Around cold or hot spots, we expect a 
certain structure to the polarization signal



From theory
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As observed by WMAP
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… standard model predicts a specific 
linked pattern of temperature and 
polarization around hot and cold spots in 
the map.  

..with 7-year results, WMAP has 
produced a visual demonstration that the 
polarization pattern around hot and cold 
spots follows the pattern expected in 
the standard model. 

Can test this by looking at the polarization signal 
around hot or cold spots in the observations.
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Significant BB signal detected by BICEP II! 22
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FIG. 14. BICEP2 BB auto spectra and 95% upper limits
from several previous experiments [2, 40, 42, 43, 47, 49–51,
106]. The curves show the theory expectations for r = 0.2
and lensed-⇤CDM. The BICEP2 uncertainties include sample
variance on an r = 0.2 contribution.

on the tensor-to-scalar ratio and find r = 0.20+0.07
�0.05 with

r = 0 ruled out at a significance of 7.0�, with no fore-
ground subtraction. Multiple lines of evidence suggest
that the contribution of foregrounds (which will lower
the favored value of r) is subdominant: (i) direct pro-
jection of the available foreground models using typical
model assumptions, (ii) lack of strong cross-correlation of
those models against the observed sky pattern (Fig. 6),
(iii) the frequency spectral index of the signal as con-
strained using BICEP1 data at 100 GHz (Fig. 8), and
(iv) the power spectral form of the signal and its appar-
ent spatial isotropy (Figs. 3 and 10).

Subtracting the various dust models at their default
parameter values and re-deriving the r constraint still
results in high significance of detection. As discussed
above, one possibility that cannot be ruled out is a larger
than anticipated contribution from polarized dust. Given
the present evidence disfavoring this, these high values
of r are in apparent tension with previous indirect limits
based on temperature measurements and we have dis-
cussed some possible resolutions including modifications
of the initial scalar perturbation spectrum such as run-
ning. However, we emphasize that we do not claim to
know what the resolution is, if one is in fact necessary.

Figure 14 shows the BICEP2 results compared to pre-
vious upper limits. We have pushed into a new regime of
sensitivity, and the high-confidence detection of B-mode
polarization at degree angular scales brings us to an ex-
citing juncture. If the origin is in tensors, as favored by
the evidence presented above, it heralds a new era of B-
mode cosmology. However, if these B modes represent
evidence of a high-dust foreground, it reveals the scale of
the challenges that lie ahead.
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Note added

Since we submitted this paper new information on
polarized dust emission has become available from the
Planck experiment in a series of papers [107–110]. While
these confirm that the modal polarization fraction of dust
is ⇠ 4%, there is a long tail to fractions as high as 20%
(see Fig. 7 of [107]). There is also a trend to higher po-
larization fractions in regions of lower total dust emission
[see Fig. 18 of [107] noting that the BICEP2 field has a
column density of ⇠ (1�2)⇥1020 H cm�2]. We note that
these papers restrict their analysis to regions of the sky
where “systematic uncertainties are small, and where the
dust signal dominates total emission,” and that this ex-
cludes 21% of the sky that includes the BICEP2 region.
Thus while these papers do not o↵er definitive informa-
tion on the level of dust contamination in our field, they
do suggest that it may well be higher than any of the
models considered in Sec. IX.
In addition there has been extensive discussion of

our preprint in the cosmology community. Two
preprints [111, 112] look at polarized synchrotron emis-

BICEP2 results show a positive detection of BB modes.   Attempted fit 
to gravity waves from inflation...  Lensing contributes at small scales
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Growth of Structure
We start with tiny fluctuations in the background radiation temperature, which are 
related to density fluctuations.   These grow into the very clustered universe we see 

today.   We therefore need to study the density  perturbations.

Gravitational Jeans Instability: Jeans showed that starting from a homogeneous and isotropic 
“mean” fluid, small fluctuations in the density dρ and velocity dv can evolve with time.

The simple criterion to decide whether a fluctuation will grow with time is that the 
typical length scale of a fluctuation should be larger than the Jeans length λJ.

δ(t) = (ρ − ρ)/ρ << 1− −

Consider a static, homogeneous matter-only Universe in which there is a spherical 
region that is overdense:

ρ = ρ(1 + δ)−

R(t)
d2R/dt2 = −G(ΔM)/R2 = −G((4/3)πR3ρδ)/R2−

d2R/dt2 / R = −(4π/3)Gρδ−

Hence, a mass excess δ > 0 will cause the sphere to collapse

Conservation of mass gives M = (4π/3)ρ[1+δ(t)]R(t)3 = constant during collapse−



Growth of Structure

Conversation of mass gives M = (4π/3)ρ[1+δ(t)]R(t)3 = constant during collapse−

R(t) = R0 [1+δ]−1/3    where R0 = (3M/4πρ)1/3−

d2R/dt2 = −(1/3)R0d2δ/dt2If δ << 1, then R(t) = R0[1−(1/3)δ(t)]  =>

mass conservation yields ==> d2R/dt2 = −(1/3)R0d2δ/dt2             (δ<<1)

where tdyn = 1/(4πGρ)1/2  is the dynamical time for collapse−

If the overdense sphere starts at rest, dδ/dt = 0 at  t=0 =>  A1 = A2 = δ(0)/2.   After a few 
dynamical times, only the growing mode matters → the fluctuations grow exponentially with time.

However, as the sphere collapses, pressure will build up.   When a sphere is compressed by its 
own gravity, a pressure gradient will build up to counter the effects of gravity (e.g., in a star)

If the pressure gradient balances gravity, we have hydrostatic equilibrium.

The pressure gradient steepening takes time: any change in pressure travels with the 
speed of sound cs; therefore the time to build up a pressure gradient is a sphere of 

radius R is pressure ~ R/cs

d2δ/dt2 = 4πGρδ      which has solutions    δ = A1et/tdyn + A2e−t/tdyn
−

cs = c (dP/dρ)1/2 = w1/2 c



Growth of Structure

For hydrostatic equilibrium to develop the gradient must build up before collapse:

A more accurate derivation yields λJ = cs(π/Gρ)1/2 = 2πcs tdyn

= 1.22 tdyn

If we now focus on one component with equation of state w and cs = (w)1/2 c

λJ  = 2πcstdyn = 2π(2/3)1/2 w1/2 c/H

For a photon gas,  cs = c/31/2 ~ 0.58c  => λJ  = 2πcstdyn = 2π 21/2 c/3H ~ 3c/H

Density fluctuations in the radiative component will be pressure supported if they are 
smaller than 3 times the Hubble radius

Such fluctuations will oscillate.  Only larger ones will collapse.

A universe containing only radiation will have density fluctuations λJ < 3c/H but they 
produce sound waves.

To get collapsed structures, we need a non-relativistic component with w1/2 << 1

Consider a spatially flat Universe with mean density ρ  => 1/H = (3/8πGρ)1/2=(3/2)1/2 tdyn
−

R/cs = tpressure < tdyn = (G ρ)−1/2   => R < cstdyn = cs/(Gρ)1/2 = λJ

Jeans Length

−

λJ  = 2πcstdyn = 2π(2/3)1/2cs/H

The Jeans length in an expanding universe will then be



Growth of Structure

Prior to decoupling, the baryons were coupled to the photons => no collapse possible

At c/H(zrec) ~ 0.2 Mpc and εΥ = 1.4 εbaryon 

=> λJ (before decoupling) = 3c/H(zrec) = 0.6 Mpc

baryon Jeans mass before decoupling = 7 x 1018  Msun

30,000x coma cluster

After decoupling, we have two separate gases:  for baryons, the sound speed drops to

cs (baryon) = (kT/mc2)1/2 c

cs (baryon) = (1.5 x 10−5)c or 5 km/s

Then, after decoupling, the Jeans length decreased by a factor of cs(baryon)/cs(photon) ~ 2.6 x 10−5

kT = 0.26 eV
mc2 = 1.22 mp c2 = 1140 MeV

Y = 0.24

MJ (after) ~ 105 Msolar
much smaller than the mass of our galaxy,

~baryonic mass of the smallest dwarf galaxies

After decoupling, baryon density perturbations could start growing.



Growth of Structure
We can study the Jeans theory in a bit more detail, focusing first on the collisional fluids.   

The equations of motion are in the Newtonian approximation:

∂ρ/∂t + ̙独(ρv) = 0 continuity equation

∂v/∂t + (v独̙)v + (1/ρ)P + ̙ƿ = 0 Euler equation

̙2Φ  − 4πGρ = 0 Poisson’s Equation

We will also neglect any dissipative terms arriving from viscosity or Thermal conductivity.   
Therefore, we have conservation of entropy per unit mass:

∂S/∂t + v独̙S = 0
A trivial solution is the following: ρ = ρ0, v = 0, S = S0, p = p0, ̙ƿ = 0

Note that if ρ = ρ0 ≠ 0, then Φ must vary spatially => homogeneous distribution of ρ cannot
be stationary, similar to what we saw when we derived the Friedmann equation

Although the derivation is formally incorrect, the results are qualitatively unchanged and the 
results can be “reinterpreted” to give correct results.

 ρ = ρ0 + δρ,  v = δv, p = p0  + δp S = S0 + δS Φ = Φ0 + δΦ
∂δρ/∂t + ρ0̙独(δv) = 0

∂δv/∂t + (1/ρ0)(dp/dρ)s̙ǅǐ + (1/ρ0)(dp/ds)ρ̙ǅs + ̙ǅϕ = 0

̙2δϕ − 4πGδρ = 0 ∂δS/∂t = 0



Modeling the Growth of Structure using Waves in Fluid

We will look for solution in the form of plane waves δui = δi eik独r where δui = δρ, δv, δϕ, δs

Given that the unperturbed solution do not depend on position, we can search for solutions:
δi(t) = δ0,i eiωt amplitude D, V, Φ, Σ

Use that cs = (∂P/∂ρ)s and δ0 = D/ρ0

=> ω δ0 + k 独V = 0

=> ω V + k cs2 δ0 + k/ρ (dp/ds)ρ Σ + kΦ = 0

=> k2 Φ + 4πGρ0δ0 = 0

=> ω Σ = 0

Let us consider solutions with ω ≠ 0 => Σ = 0: perturbations are adiabatic

Also,  k独V ≠ 0, we can decompose into components parallel and perpendicular to V
k perpendicular to V => δ0 = 0, Φ = 0, these vertical models do not imply a density perturbation.

k is parallel to V => ω δ0 + kV = 0
=> ωV + kcs2 δ0 + kΦ = 0
=> k2 Φ + 4πGρ0δ0 = 0

ω    k   0 
kcs2  ω  k

4πGρ0   0     k2
(        )(  ) = (  )δ0                          0

V                   0
Φ                   0

This admits a non-zero solution for δ0, V, Φ  if and only if its determinant vanishes => ω and k 
must satisfy the dispersion relation

=> ω2 − cs2 k2 + 4πGρ0  = 0



If λ > λJ,  the frequency is imaginary: ω = ± i (4πGρ0)1/2 [1−(λJ/λ)2]1/2

and the solution for the density is dρ/ρ0 = δ0 eikr e±ωt

The characteristic time scale for the evolution of the amplitude is

τ = ω−1 = 1/(4πGρ0)1/2 [1−(λJ/λ)2]−1/2

for λ >> λJ, this corresponds to the dynamical or free-fall time. 

Modeling the Growth of Structure using Waves in Fluid

The solutions are of two types, depending on whether λ = 2π/k larger or smaller than

λJ = cs (π/Gρ0)1/2

In the case that λ < λJ,  the value of ω is real and ω = ±cs k[1−(λ/λJ)2]1/2

These represent two sound waves in directions ±k with a dispersion ω


