
The Age of Universe... 

and  

deriving the Hubble constant 

(Lecture 2)



Layout of the Course

Feb 5:  Introduction / Overview / General Concepts
Feb 12:  Age of Universe / Distance Ladder
Feb 19: Distance Ladder / Hubble Constant
Feb 26:   Distant Measures / SNe science / Baryonic Content
Mar 4:  Dark Matter Content of Universe / Cosmic Microwave Background
Mar 11: Cosmic Microwave Background
Mar 18: Cosmic Microwave Background / Large Scale Structure
Mar 25:  Baryon Acoustic Oscillations / Dark Energy / Clusters
Apr 1:  No Class
Apr 8: Clusters / Cosmic Shear
Apr 15: Dark Energy Missions / Review for Final Exam

May 13:  Final Exam

This Week



Problem Set #1

Will make available on 
BrightSpace by Monday 

evening!

Due Sunday, February 25, 2023



Review Material from Last Week



Standard Cosmological Model

Founded on Two Principles:

1)Einstein’s general theory of relativity...
2) general cosmological principle 

(assume homogeneous and isotropic universe)

Second principle allows us to set up a metric -- the 
Friedmann-Robertson-Walker metric -- for measuring 

distances in space time:

Questions for Observational Cosmology 

•! What is the age of the universe implied for the observed 
expansion rate?  How does this match observations of the oldest 
stars in the universe? 

•! What are the values of the cosmological parameters H0, !0 (or 
q0), and "? 

•! What is the large scale distribution of matter in the universe? 

•! What is the dark matter?  How good is the evidence for it? 

•! What is the evidence for dark energy?  How good is it? 

•! What is the nature of the cosmic background radiation?  What 
sort of constraints does it place on some of the above questions? 

•! Can we come up with a consistent theory for the formation of the 
structures that we see in the universe?  How do sheets, walls, 
voids, clusters, and galaxies form? 

•! Lots more, but these are the ones we’ll try to address this 
semester! 

The Robertson-Walker Metric 

General relativity is a geometric theory describing the 
Curvature of space time.  We want to describe the distance 
between two events (an event happens at a certain place 
AND time) in a 4-dimensional spacetime. 

In 3-dimensional space, we can describe the separation 
between two points as: 

The distance between two points is found by integrating 
along the path.  In spacetime the interval between these 
two points is: 

And we have to integrate along time and space to find the 
distance. 

The Robertson-Walker Metric 

In the case of an expanding universe, the space distance 
between two points is: 

In spherical coordinates in Cartesian geometry: 

But space-time isn’t necessarily flat, it may have curvature 
(remember k?) so: 

The Robertson-Walker Metric 

Putting this all together, we have: 

This is known as the Robertson-Walker metric discovered 
independently in the mid-1930’s.  Note that it is physics 
free and does not depend on gravitational theory which 
enters through the factors R(t) and k. 

r is the co-moving coordinate, R(t) is the scale factor 
of the expansion and dp = R(t) x r is the “proper 
distance”, and k is the curvature.  These can be 
observationally determined. 

Friedmann-Robertson-Walker metric
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The Robertson-Walker Metric 

Putting this all together, we have: 

This is known as the Robertson-Walker metric discovered 
independently in the mid-1930’s.  Note that it is physics 
free and does not depend on gravitational theory which 
enters through the factors R(t) and k. 

r is the co-moving coordinate, R(t) is the scale factor 
of the expansion and dp = R(t) x r is the “proper 
distance”, and k is the curvature.  These can be 
observationally determined. 

R ∝ size of universe
R = “scale factor”

Other coordinates r, θ, ɸ 
are comoving..

k = 0, -1, +1
flat, closed, open



k = −1 (open)
k = 0 (flat)

k = +1 (closed)

Different topologies:

“closed”

“flat”

“open”

Options for the different geometries:

Take Einstein’s field equation 

Plug in the Friedmann-Robertson-Walker metric

This gives the following Friedmann  equations....  

Abstract

Ultra-deep ACS and WFC3/IR HUDF+HUDF09 data, along with
the wide-area GOODS+ERS+CANDELS data over the CDF-S GOODS
field, are used to measure UV colors, expressed as the UV-continuum
slope β, of star-forming galaxies over a range of luminosity (0.1L∗

z=3

to 2L∗

z=3) at high redshift (z ∼ 7 to z ∼ 4). β is measured using
all ACS and WFC3/IR passbands uncontaminated by Lyα and spec-
tral breaks. Extensive tests show that our β measurements are only
subject to minimal biases. Using a different selection procedure, Dun-
lop et al. recently found large biases in their β measurements. To
reconcile these different results, we simulated both approaches and
found that β measurements for faint sources are subject to large bi-
ases if the same passbands are used both to select the sources and to
measure β. High-redshift galaxies show a well-defined rest-frame UV
color-magnitude (CM) relationship that becomes systematically bluer
towards fainter UV luminosities. No evolution is seen in the slope of
the UV CM relationship in the first 1.5 Gyr, though there is a small
evolution in the zero-point to redder colors from z ∼ 7 to z ∼ 4. This
suggests that galaxies are evolving along a well-defined sequence in
the LUV -color (β) plane (a “star-forming sequence”?). Dust appears
to be the principal factor driving changes in the UV color β with lumi-
nosity. These new larger β samples lead to improved dust extinction
estimates at z ∼ 4-7 and confirm that the extinction is essentially
zero at low luminosities and high redshifts. Inclusion of the new dust
extinction results leads to (i) excellent agreement between the SFR
density at z ∼ 4-8 and that inferred from the stellar mass density,
and (ii) to higher SSFRs at z ≥ 4, suggesting the SSFR may evolve
modestly from z ∼ 4-7 to z ∼ 2.
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An important number is the critical density:

ρm > ρcrit  ⇒ Universe eventually recollapses

ρm = ρcrit  ⇒ Universe expands forever

ρm < ρcrit  ⇒ Universe expands forever
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However for convenience, astronomers introduce a dimensionless quantity to 
describe these densities ρm, ρr, ρΛ  relative to the critical density:

Ωm > 1 ⇒ Universe eventually recollapses

Ωm = 1 ⇒ Universe expands forever

Ωm < 1⇒ Universe expands forever

But for ΩΛ ≠ 0, discussion is more complicated 



Ω = Ωm + Ωr + ΩΛ determines geometry of universe

Ω > 1 ⇒ Universe is closed (k = +1)
Ω = 1 ⇒ Universe is flat (k=0)

Ω < 1⇒ Universe is open (k=−1)

“closed”

“flat”

“open”
Ω > 1 

Ω < 1 

Ω = 1 

The expansion of the universe itself has an effect on the importance of 
the role or importance of each of the contents of the universe...

ρm ∝ R−3

ρr ∝ R−4 

Λ = const

In particular, the density of these 
components of the universe scale as
follows with respect to the size of 

the universe R:

Components of the universe:

Size of Universe



The expansion rate of the 
universe shows a different 

time dependence depending 
on which component of the 

universe dominates the energy 
density...

Expansion History of Universe (Benchmark Model) 

! 

R" t
2 / 3

! 

R" t
1/ 2

! 

R"e
t

(Carroll & Ostlie:  Modern Astrophysics 

  2nd Edition, Figure 29.19) 

H0 Hubble Constant 
ΩM     Matter Density in Matter 
ΩΛ      Density of Dark Energy   
Ωb      Matter Density in Baryons 
Ωr       Energy Density in Radiation  
ns       Slope of Primordial Power Spectrum 
σ8 RMS fluctuations of the mass density in       
            spheres of 8h-1 Mpc

What are the key 
parameters we hope to 

determine in 
observational cosmology?



How do we determine what the Age of Universe is?

From the expansion rate of the universeThe Extragalactic Distance Scale
In 1929, Hubble showed that the velocities and distances are linearly 

correlated, and satisfy

v = H0 d

where v is the recessional velocity (km/s) and d is the distance (Mpc).  H0 is a 
constant, “Hubble’s Constant” and has units of km s-1  Mpc-1.

Tuesday, March 9, 2010

Age of Universe ~ 1/H0

In the simplest case that there is no acceleration in the expansion of 
the universe:



Age of Universe 
(using solutions to Friedmann’s equations)
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Ṙ
= (1)

t =
∫ t

0

dR

R(Ṙ/R)
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R = size of universe

H(R) = Hubble “constant” for 
the universe with size R
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Now onto new material…
(With a repeat of the end of lecture 1)



In search of an equation for H(R):
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the wide-area GOODS+ERS+CANDELS data over the CDF-S GOODS
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all ACS and WFC3/IR passbands uncontaminated by Lyα and spec-
tral breaks. Extensive tests show that our β measurements are only
subject to minimal biases. Using a different selection procedure, Dun-
lop et al. recently found large biases in their β measurements. To
reconcile these different results, we simulated both approaches and
found that β measurements for faint sources are subject to large bi-
ases if the same passbands are used both to select the sources and to
measure β. High-redshift galaxies show a well-defined rest-frame UV
color-magnitude (CM) relationship that becomes systematically bluer
towards fainter UV luminosities. No evolution is seen in the slope of
the UV CM relationship in the first 1.5 Gyr, though there is a small
evolution in the zero-point to redder colors from z ∼ 7 to z ∼ 4. This
suggests that galaxies are evolving along a well-defined sequence in
the LUV -color (β) plane (a “star-forming sequence”?). Dust appears
to be the principal factor driving changes in the UV color β with lumi-
nosity. These new larger β samples lead to improved dust extinction
estimates at z ∼ 4-7 and confirm that the extinction is essentially
zero at low luminosities and high redshifts. Inclusion of the new dust
extinction results leads to (i) excellent agreement between the SFR
density at z ∼ 4-8 and that inferred from the stellar mass density,
and (ii) to higher SSFRs at z ≥ 4, suggesting the SSFR may evolve
modestly from z ∼ 4-7 to z ∼ 2.
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In search of an equation for H(R):
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Ṙ
= (1)

t =
Z R0

0

dR

R(Ṙ/R)
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Ṙ
= (1)

t =
∫ t

0

dR

R(Ṙ/R)
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Ṙ
= (1)

t =
Z R0

0

dR

R(Ṙ/R)
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Consider Empty Universe:
Ωm = 0, Ωr = 0, ΩΛ = 0:

E(R) = [Ωk(R/R0)−2]1/2

E(R) = (R/R0)−1
Ωk = 1− Ωm− Ωr− ΩΛ = 1

Universe Expands at Same Rate for all of Cosmic Time!
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How would things differ if we 
include the other two main 

components of the universe?



Age of Universe 
(using solutions to Friedmann’s equations)

Matter
(Baryons + Dark Matter)

“Opposes Expansion”

Ωm 
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?

What counteracts gravity? !

Dark Energy
(Vacuum Energy)

“Speeds Expansion”
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What counteracts gravity?!
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Age of Universe 
(using solutions to Friedmann’s equations)

Consider Flat Matter-Only Universe:
 Ωm = 1, Ωr = 0, ΩΛ = 0:
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Age of Universe 
(using solutions to Friedmann’s equations)

Consider Flat Radiation-Only Universe:
 Ωm = 0, Ωr = 1, ΩΛ = 0:
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Age of Universe 
(using solutions to Friedmann’s equations)

Consider Dark Energy-Only Universe:
 Ωm = 0, Ωr = 0, ΩΛ = 1:
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For the HW 
problems...



Age of Universe 
(using solutions to Friedmann’s equations)

In all cases:
Age of Universe ~ 1/H0 

In matter-dominated universe (where gravity slows expansion):

Age of Universe < 1/H0 

In dark energy dominated universe (where dark energy speeds expansion):

Age of Universe > 1/H0 

In empty universe (no change in expansion rate):

Age of Universe = 1/H0 



The real universe is more complicated than these
simple cases...   Components of the universe:

As we showed earlier, self-gravitating substances, i.e., radiation and matter dominate 
the energy density of the universe until it was close to the current size...

when dark energy dominates

Until just recently, we would expect the expansion of the universe to
be slowed due to self gravity from matter + radiation

We would then expect the expansion to accelerate due to the dark energy

Consequently, we have both deceleration of the expansion of the universe (at 
early times) and an acceleration of the expansion of the universe...

Therefore, age of universe ~ 1/H0



0

What counteracts gravity? !



Age of Universe 
(From Direct Observational

Evidence)



Age of the Universe 
(From Radioactive Decay)



Age of the Universe 
(From Radioactive Decay)

-- We have a rough understanding of how the heavy elements (heavier 
than Iron) are created...

Created through r-process events (likely in supernovae)

Created through s-process events (likely in AGB stars)

-- We also have predictions for the abundances we would expect for 
the different elements and isotopes from these processes

-- Of course, some of these elements or isotopes will be unstable and 
suffer radioactive decay.   By measuring the abundance of these 
elements or isotopes at some later time t and compare their relative 
abundance, we can measure how much time has passed.

N238 = N238,0  x   e−λt

Initial 
Abundance

Abundance 
when observed

Fraction surviving



Basic Mechanism s of Nucleosynthesis beyond iron 
(n,γ) reactions increases the mass number (A) . However, if the isotope is unstable , 
then subsequent process depends on the neutron flux and the life time (τ) 
(a)   

βγ ττ >>n
Standard s-process (beta decay wins the game). The 
produced nuclei are closed to the valley of beta stability (see 
Figure) 

128-132Xe 

5 

From: Mounib El Cid http://russbachwks2014.sciencesconf.org/conference/
russbachwks2014/ElEid_Russbach_2014.pdf

http://russbachwks2014.sciencesconf.org/conference/russbachwks2014/ElEid_Russbach_2014.pdf
http://russbachwks2014.sciencesconf.org/conference/russbachwks2014/ElEid_Russbach_2014.pdf


βγ ττ <<n
(b) (neutron capture wins the game, one deals with the r-process) 

Beta decay lifetimes: (10-3 -10-4) s. 
For τnγ=10-4 s :  Nn=3x1020  neutron/cm3 

6 

From: Mounib El Cid http://russbachwks2014.sciencesconf.org/conference/
russbachwks2014/ElEid_Russbach_2014.pdf

http://russbachwks2014.sciencesconf.org/conference/russbachwks2014/ElEid_Russbach_2014.pdf
http://russbachwks2014.sciencesconf.org/conference/russbachwks2014/ElEid_Russbach_2014.pdf


Age of the Universe 
(From Radioactive Decay)

238U  → 206Pb (Radium series)

235U  → 207Pb (Actinium series)

232Th  → 208Pb (Thorium Series)
Half-life = 14 Gyr

Half-life = 4.5 Gyr

Half-life = 0.7 Gyr
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Age of the Universe 
(From Radioactive Decay)

-- Look for the signature of Uranium or Thorium in the spectra of old 
stars in our galaxy

-- Spectral lines from Uranium and Thorium are relatively weak in 
general, so this is difficult

-- In practice, one requires stars with extremely low metallicities, so the 
Thorium and Uranium lines are not buried under stronger metal lines

-- By measuring actual abundances, we have an estimate of the age -- given 
that we have theoretical predictions for the initial abundances of these 
elements.  

-- Use of Thorium less ideal given its longer half life (14 Gyr).   We 
expect overall abundance to drop by ~2x over age of universe.



White Dwarf Cooling Curves 

•! Hansen et al (2002) find an age of 12.7 +/- 0.7 Gyr for 

M4 from the white dwarf cooling sequence 

•! Quoted errors don’t take into account uncertainties in 

the theoretical cooling calculations so should be 

higher  

•! This age is consistent with the ages of GCs found 

from the main sequence turnoff luminosities (phew!) 

•! Only been done for one globular cluster, would be 

nice if there were more measurements, but 
observationally expensive. 

Nucleocosmochronology 

•! Can use the radioactive decay of elements to age 
date the oldest stars in the galaxy 

•! Has been done with 232Th (half-life = 14 Gyr) and 238U 
(half-life = 4.5 Gyr) and other elements 

•! Measuring the ratio of various elements provides an 
estimate of the age of the universe given theoretical 
predictions of the initial abundance ratio 

•! This is difficult because Th and U have weak spectral 
lines so this can only be done with stars with 
enhanced Th and U (requires large surveys for metal-
poor stars) and unknown theoretical predictions for 
the production of r-process (rapid neutron capture) 
elements 

Th and U abundances of CS 31082-001 from Hill et al (2002) 

Thorium and uranium measurements of BD+17 3248  
from Cowan et al (2002) 

White Dwarf Cooling Curves 

•! Hansen et al (2002) find an age of 12.7 +/- 0.7 Gyr for 

M4 from the white dwarf cooling sequence 

•! Quoted errors don’t take into account uncertainties in 

the theoretical cooling calculations so should be 

higher  

•! This age is consistent with the ages of GCs found 

from the main sequence turnoff luminosities (phew!) 

•! Only been done for one globular cluster, would be 

nice if there were more measurements, but 
observationally expensive. 

Nucleocosmochronology 

•! Can use the radioactive decay of elements to age 
date the oldest stars in the galaxy 

•! Has been done with 232Th (half-life = 14 Gyr) and 238U 
(half-life = 4.5 Gyr) and other elements 

•! Measuring the ratio of various elements provides an 
estimate of the age of the universe given theoretical 
predictions of the initial abundance ratio 

•! This is difficult because Th and U have weak spectral 
lines so this can only be done with stars with 
enhanced Th and U (requires large surveys for metal-
poor stars) and unknown theoretical predictions for 
the production of r-process (rapid neutron capture) 
elements 

Th and U abundances of CS 31082-001 from Hill et al (2002) 

Thorium and uranium measurements of BD+17 3248  
from Cowan et al (2002) Thorium Abundances of CS31082-001 from Hill et al. (2002)

Sources like these have unusually weak Iron lines



White Dwarf Cooling Curves 

•! Hansen et al (2002) find an age of 12.7 +/- 0.7 Gyr for 

M4 from the white dwarf cooling sequence 

•! Quoted errors don’t take into account uncertainties in 

the theoretical cooling calculations so should be 

higher  

•! This age is consistent with the ages of GCs found 

from the main sequence turnoff luminosities (phew!) 

•! Only been done for one globular cluster, would be 

nice if there were more measurements, but 
observationally expensive. 

Nucleocosmochronology 

•! Can use the radioactive decay of elements to age 
date the oldest stars in the galaxy 

•! Has been done with 232Th (half-life = 14 Gyr) and 238U 
(half-life = 4.5 Gyr) and other elements 

•! Measuring the ratio of various elements provides an 
estimate of the age of the universe given theoretical 
predictions of the initial abundance ratio 

•! This is difficult because Th and U have weak spectral 
lines so this can only be done with stars with 
enhanced Th and U (requires large surveys for metal-
poor stars) and unknown theoretical predictions for 
the production of r-process (rapid neutron capture) 
elements 

Th and U abundances of CS 31082-001 from Hill et al (2002) 

Thorium and uranium measurements of BD+17 3248  
from Cowan et al (2002) 

Thorium and Uranium measurements of BD+17 3248 
from Cowan et al. (2002)



Abundance ratios of BD+17 3248 from Cowan et al (2002) 

Mean = 13.8 +/- 4, but note the spread! 

Nucleocosmochronology 

•! Uranium has been detected in a few stars 

•! For  CS 31082-001, the Uranium abundance alone 

gives an age of 12.5 +/- 3 Gyr (Cayrel et al. 2001) 

while the Th/Ur ratio of this same star gives 14.0 +/- 

2.4 Gyr 

•! For BD+17 3248, the abundance ratios give 13.8 +/- 4 

Gyr 

•! Method is consistent with GCs and WDs but errors 

are large.  Need better measurements and theory plus 
more stars! 

Lookback time 

•! If we can measure the age of distant galaxies we can determine 

the age of the universe since tL= t0 – t(z) so t0 = tL + t(z)  

•! There has been an observation of an elliptical at z=1.55 which is 

~3.5 Gyr old based on its spectral features 

•! Similarly, we observe large numbers of Lyman-break galaxies at 

z=3 – 3.5 which appear to be ~320 Myr old.  But note they span 

a range of ages … 

•! If !M,!"=0.3,0.7 and H0=70 then tL(z=1.5)=9.3 Gyr and 
tL(z=3)=11.4 Gyr.  So t0 > 12.8 or 11.7 Gyr. 

Stellar population ages of Lyman Break Galaxies 
Shapley et al (2001) 

Median age=320Myr 
20% > 1 Gyr 

(Principal uncertainty is the production ratios)

Age ~ 12.5 ± 3 Gyr (Cayrel et al. 2001)

For CS31082-0018:
Age ~ 13.8 ± 4 Gyr (but spread is large)

For reference, radiometric dating to rocks we find on earth, moon, or in 
meteorites gives ages of ~4-5 Gyrs.   This is younger than the oldest stars 
in the Milky Way, but suggests that our solar system formed 4-5 Gyrs ago.



Age of the Universe 
(From Aging of Stars...)



Globular Clusters

Globular clusters 

•! They are among the oldest objects in the galaxy, provide a lower 

limit on the age of the universe 

–! Why is it a lower limit? 

–! There are a fair number of uncertainties in these estimates, 

including errors in measuring the distances to the GCs and 
uncertainties in the isochrones used to derive ages (i.e. stellar 

evolution models) 

–! Inputs to stellar evolution models include – oxygen abundance [O/

Fe], treatment of convection, helium abundance, reaction rates of 
14N + p ! 150 + (, helium diffusion, conversions from theoretical 

temperatures and luminosities to observed colors and magnitudes, 
and opacities 

Ages of globular clusters 

•! We measure the age of a globular cluster by 

measuring the magnitude of the main 

sequence turnoff 

•! Compare this to stellar evolutionary models 

which estimate the surface temperature and 

luminosity of a stars as a function of time 

47 Tucanae 

Typical globular cluster 
color magnitude diagram (CMD) 

-- Very Compact, gravitationally bound 
star clusters

-- Generally very red, stars seem to have formed @ 
approximately the same time

-- Contain ~104 stars

-- ~150 Globular Clusters in our own Milky Way



Globular Clusters

Globular clusters 

•! They are among the oldest objects in the galaxy, provide a lower 

limit on the age of the universe 

–! Why is it a lower limit? 

–! There are a fair number of uncertainties in these estimates, 

including errors in measuring the distances to the GCs and 
uncertainties in the isochrones used to derive ages (i.e. stellar 

evolution models) 

–! Inputs to stellar evolution models include – oxygen abundance [O/

Fe], treatment of convection, helium abundance, reaction rates of 
14N + p ! 150 + (, helium diffusion, conversions from theoretical 

temperatures and luminosities to observed colors and magnitudes, 
and opacities 

Ages of globular clusters 

•! We measure the age of a globular cluster by 

measuring the magnitude of the main 

sequence turnoff 

•! Compare this to stellar evolutionary models 

which estimate the surface temperature and 

luminosity of a stars as a function of time 

47 Tucanae 

Typical globular cluster 
color magnitude diagram (CMD) 

Since all stars in globular cluster 
seem to have formed at 
approximately same time....

Color

Luminosity

Since evolution of Stars on the Main 
Sequence very well understood, we 
can use the position of the main 
sequence turn-off (MSTO) to age 
date a globular cluster

L ∝ M4  ⇒ t(MSTO) ∝ M−3 ∝ L−3/4

Most massive stars arrive at turn-off 
first:

Lower luminosity turn-offs ⇒ Older 



Globular Clusters

Globular clusters 

•! They are among the oldest objects in the galaxy, provide a lower 

limit on the age of the universe 

–! Why is it a lower limit? 

–! There are a fair number of uncertainties in these estimates, 

including errors in measuring the distances to the GCs and 
uncertainties in the isochrones used to derive ages (i.e. stellar 

evolution models) 

–! Inputs to stellar evolution models include – oxygen abundance [O/

Fe], treatment of convection, helium abundance, reaction rates of 
14N + p ! 150 + (, helium diffusion, conversions from theoretical 

temperatures and luminosities to observed colors and magnitudes, 
and opacities 

Ages of globular clusters 

•! We measure the age of a globular cluster by 

measuring the magnitude of the main 

sequence turnoff 

•! Compare this to stellar evolutionary models 

which estimate the surface temperature and 

luminosity of a stars as a function of time 

47 Tucanae 

Typical globular cluster 
color magnitude diagram (CMD) 

Biggest uncertainty in age dating a 
globular cluster derives from its 
estimated distance

Color

Luminosity

Use RR Lyrae stars to calculate 
distance to globular cluster

Typical ages found for oldest 
globular clusters

~12 ± 1 Gyr

~13 ± 1 Gyr

or

(halo GC)

(disk GC)



Color-magnitude diagram for Globular Clusters

V
 [

m
ag

]

B-V color [mag]

GC 47 Tuc
M5

Tuesday, March 9, 2010

How does this work for real Globular Clusters?



-- For those of you interested in the history, you should note that 
older estimates of the age of globular clusters were frequently in the 
range of ~13-17 Gyr (older than the age of the universe).    However,  
current estimates are no longer so old.   Why?   What has changed?

 * Distances to globular clusters increased by ~10% based on 
Hipparcos calibration of the absolute magnitude of subdwarfs (lowers 
ages by ~20%)

 * Inputs to Stellar Evolution models have been revised.



Age of the Universe 
(From Cooling of White Dwarfs)

-- End stage for stellar evolution of 
stars with initial masses < 8 Msol

-- White dwarfs support themselves by 
electron degeneracy pressure (not 

fusion)

Globular clusters 

•! They are among the oldest objects in the galaxy, provide a lower 

limit on the age of the universe 

–! Why is it a lower limit? 

–! There are a fair number of uncertainties in these estimates, 

including errors in measuring the distances to the GCs and 
uncertainties in the isochrones used to derive ages (i.e. stellar 

evolution models) 

–! Inputs to stellar evolution models include – oxygen abundance [O/

Fe], treatment of convection, helium abundance, reaction rates of 
14N + p ! 150 + (, helium diffusion, conversions from theoretical 

temperatures and luminosities to observed colors and magnitudes, 
and opacities 

Ages of globular clusters 

•! We measure the age of a globular cluster by 

measuring the magnitude of the main 

sequence turnoff 

•! Compare this to stellar evolutionary models 

which estimate the surface temperature and 

luminosity of a stars as a function of time 

47 Tucanae 

Typical globular cluster 
color magnitude diagram (CMD) 

White Dwarf Cooling Curves 

•! White dwarfs are the end stage of stellar evolution for stars with initial 

masses <8 M
!  

•! They are supported by electron degeneracy pressure (not fusion) and 

are slowly cooling and fading as they radiate 

•! We can use the luminosity of the faintest WDs in a cluster to estimate 

the cluster age by comparing the observed luminosities to theoretical 
cooling curves 

•! Theoretical curves are subject to uncertainties related to the core 

composition of white dwarfs, detailed radiative transfer calculations 
which are difficult at cool temperatures 

•! White dwarfs are faint so this is hard to do.  Need deep HST 

observations which have been done of the nearby globular cluster M4 

123 orbits of HST time! 
Down to V=30. 

Hansen et al (2002) white dwarf sequence of M4 

Blue – hydrogen  
atmosphere models 
Red – helium  
atmosphere models for 
a 0.6 M

! WD  

Main sequence 

White dwarfs 
Observed WD luminosity 
function compared to 
theoretical predictions 
for various ages from 
Hansen et al. (2002) 

Age

-- White dwarfs radiate light, as they age.  
This causes them to cool and become 

fainter.

-- Faintest white dwarfs are the 
oldest...

-- By measuring the luminosity of 
the faintest white dwarfs, you can 
measure an age for the stars in a 

globular cluster



Age of the Universe 
(From Cooling of White Dwarfs)

-- White dwarfs are faint, so need 
powerful telescopes like Hubble to 

construct these diagrams

-- Observation shown at left required 
8 days of HST observations...  so very 
expensive in terms of telescope time

-- Consequently this whole enterprise of 
age-dating white dwarfs hasn’t been done 

with more than ~1-2 globular clusters

M4 (Messier 4) is 2.2 kpc (7200 light years away) 
-- one of the two closest globular clusters to us.



Age of the Universe 
(From Cooling of White Dwarfs)

-- For globular cluster shown to the 
right here, the measured ages are

12.7 ± 0.7 Gyr

-- Physics relevant to the technique is very simple (since 
white dwarfs do not generate any energy from fusion, etc.)

White Dwarf Cooling Curves 

•! White dwarfs are the end stage of stellar evolution for stars with initial 

masses <8 M
!  

•! They are supported by electron degeneracy pressure (not fusion) and 

are slowly cooling and fading as they radiate 

•! We can use the luminosity of the faintest WDs in a cluster to estimate 

the cluster age by comparing the observed luminosities to theoretical 
cooling curves 

•! Theoretical curves are subject to uncertainties related to the core 

composition of white dwarfs, detailed radiative transfer calculations 
which are difficult at cool temperatures 

•! White dwarfs are faint so this is hard to do.  Need deep HST 

observations which have been done of the nearby globular cluster M4 

123 orbits of HST time! 
Down to V=30. 

Hansen et al (2002) white dwarf sequence of M4 

Blue – hydrogen  
atmosphere models 
Red – helium  
atmosphere models for 
a 0.6 M

! WD  

Main sequence 

White dwarfs 
Observed WD luminosity 
function compared to 
theoretical predictions 
for various ages from 
Hansen et al. (2002) 

Age

Sharp 
Edge

-- Sharp edge gives the age for the oldest stars in the 
globular cluster

-- Key uncertainties include distance and reddening 
(again similar reasons as we encountered age dating the

main sequence turn-off)



Age of the Universe

-- White dwarf cooling ⇒  12.7 ± 0.7 Gyr

-- Radiometric Dating ⇒  ~13 ± 4 Gyr

-- Aging of Stars (Main Sequence Turn-off) ⇒  ~12 ± 1 Gyr
 ~13 ± 1 Gyr



Evidence for Big Bang
1.   Age of “Stuff” in Universe ~ 1/H0

Radioactive Decay,
White Dwarf Cooling, 

Globular Clusters

“Expansion Rate 
of Universe”

 ~13 ± 1 Gyr  ~13.8 Gyr



Other Evidence Universe isn’t 
Infinitely Old....



Cosmic Microwave Background

Cosmic Microwave Background
• CMB predicted by Gamov in 1948.

Discovered by Penzias and Wilson in 1965.

A perfect Blackbody!

1992 NASA -
COBE

COsmic Background
Explorer

-- CMB predicted by Gamov in 1948
-- Discovered by Penzias and Wilson in 1965

Cosmic Microwave Background
• CMB predicted by Gamov in 1948.

Discovered by Penzias and Wilson in 1965.

A perfect Blackbody!

1992 NASA -
COBE

COsmic Background
Explorer

AS 4022  Cosmology

2004:  WMAP all-sky CMB temperature map.

Tiny ripples (at z=1100, T=3000K,  t=3x105 yr )

are the seeds of galaxy formation!

Angular size #$ = 1o  =>  FLAT GEOMETRY

Perfect Blackbody

One only finds blackbody 
spectrum if the universe were in 
thermal equilibrium in the past...

and that is only possible if the 
universe were hotter and denser...

Argues the universe has a finite age...



Olber’s Paradox...

“Why is the night sky dark?”

“If space and time are infinite, then every sightline must 
connect with a star somewhere”

Since surface brightness is preserved (one can 
demonstrate this with basic arguments) and every 

sightline connects with a star, then every spot
on the sky must be as bright as a star.... 

Solution:
Universe is not infinitely old...  and it is expanding...

(Henrich Olbers 1826)



How else we can tell time in the 
universe?



In cosmological setting, we monitor the 
passage of time in the universe both with 
a normal clock (seconds in proper time)

and also using the scale factor of 
the universe R. 



beginning of
universe

Age of the Universe
(from the expansion rate of the universe)

Now

Time



but instead of referring to some past epoch in 
terms of the scale factor of the universe then 

(i.e., R),

we do it in terms of the relative changes in 
the size of the universe...

By looking at changes to the wavelength of light 
which stretches by the same factor as the 

universe has expanded

How do we measure these relative changes?



The expansion of the universe causes light from 
distant galaxies to be redshifted...

Space
Space
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1

Note 0 subscript indicates current date universe...

The expansion factor is the same for light, as for the 
universe itself

By measuring the stretching of light from distant 
objects, we can calculate how much the universe has 

expanded since the light was emitted



The quantity which encapsulates this measurement of the 
expansion of the universe since the photon was emitted is 

the redshift or cosmological redshift.
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redshift

How does the stretching of light from real galaxies look?
2/20/04 Chris Pearson :   Observational Cosmology 1: Observational Parameters - ISAS -2003

31

OBSERVATIONAL PARAMETERS

1.4: 1.4: The RedshiftThe Redshift
Cosmological Redshift
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Cosmological explanation: 

Redshift - natural consequence of assumption that R(t) is an increasing function of time

The wavefronts expand with the expanding Universe, stretching the photon wavelength.
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What is the relation between redshift and time?

Just like proper time, it provides us a way of ordering 
different events in the history of the universe.

C. Porciani! Observational Cosmology! I-60!

Redshift vs time!

Time (Gyr)

R
ed

sh
ift



What is the Hubble constant?



The Extragalactic Distance Scale
In 1929, Hubble showed that the velocities and distances are linearly 

correlated, and satisfy

v = H0 d

where v is the recessional velocity (km/s) and d is the distance (Mpc).  H0 is a 
constant, “Hubble’s Constant” and has units of km s-1  Mpc-1.

Tuesday, March 9, 2010

From the expansion rate of the universe

“apparent Doppler 
shift” (from emission 
or absorption lines 

in spectra)

(from Cepheids / other 
things in Distance Ladder)



Why important?

Establishes basic measures of distance and time in all 
extragalactic cosmological measurements

Age of Universe ~ 1/H0

Luminosity of Faraway Galaxy ~ flux x (4πD2)

~ flux x 4π(cz/H0)2

∝ 1/H02

Distance to Faraway Galaxy ~ cz/H0 ∝ 1/H0
(z = v/c → z = H0D/c → D = cz/H0)



Why important?

H0 = 50 km/s/Mpc H0 = 100 km/s/Mpc 

Universe twice as old!

Hubble Parameter changes our interpretation substantially!

Sam
e O

bservations!
Galaxies twice as far

away!

Galaxies four times 
as luminous!



Why important?

For this reason, the Hubble constant is used to define 
some characteristic units of time and distance:

Hubble Time tH = 1/H0

Hubble Distance DH = c/H0
(distance light travels in Hubble time)



What is the Hubble constant?

R = R0 + (dR/dt) (t - t0)
Size of Universe: Taylor series expansion

R = R0 + R0(dR/dt)/R0 (t - t0)
R = R0 + R0H0 (t - t0)
R = R0 (1 + H0 (t - t0))

First order time derivative in 
Taylor series expansion of universe



How do we determine the Hubble Constant?

v = H0d
It would appear simple

distance to galaxies
“difficult to determine

because of extreme distances”

velocity of galaxies
“easy to determine”

(use wavelength of emission or 
absorption lines)

but must observe at scales where effects 
of inhomogeneities small



Challenges:
In addition to the underlying expansion of the universe,  certain 
regions of the universe are more dense than others, and galaxies 

flow towards the overdensities
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Interlude, III

To get a feel for the distances in our
“neighborhood”:

50 kpc: LMC, SMC, some other dwarf galaxies

700 kpc: M31 (Andromeda)

Palomar Schmidt

Milky Way 
Our Galaxy

M31
Andromeda

100 km/s

For example

700 kpc



v = H0d

cosmological expansion

~ ±500 km s−1

Hubble Law:

vobs  = H0d + vpeculiar

Doppler shift 
(from peculiar velocities)

(15 Mpc)(71 km/s/Mpc) ~ 1065 km/s

(100 Mpc)(71 km/s/Mpc) ~ 7100 km/s

@ 15 Mpc ⇒ 

@ 100 Mpc ⇒ 14x larger

How does H0d compare to vpeculiar? Relative Size of 
H0d to vpeculiar

2x larger

Error ~ 7%

Error ~ 50%



Challenges:

Want a model-independent geometric approach to 
measures distances of sources at >50-100 Mpc

Unfortunately -- does not exist!

To quantify the Hubble constant, we



Brief Historical Background on the long
road to measuring H0



Age of the universe 

•! Observed ages of the oldest objects in the universe 

are between 12-15 Gyr old 

•! Expansion age of the universe is 13.46 Gyr old for 

current best model with a cosmological constant 

(!M,!"=0.3,0.7 and H0=70). 

•! Note that these ages did NOT agree ~15 years ago 

when the universe appeared to be younger than the 

globular clusters!! 

The Extragalactic Distance Scale 

•! Why do we care? 

–! Measuring physical size and structure of galaxies, 

luminosities, masses 

–! Determining large scale structure of the universe 

(more later …) 

–! Cosmology – we can determine the Hubble 

Constant using Hubble’s law if we know v & d, this 

tells us about the expansion rate of the universe 
and the age of the universe 

v = H0 x d, so if we can measure v & d we 
can find H0, sounds easy, right?? 

Measuring the Hubble Constant 

Hubble constant vs. time – getting better, but … 

Hubble 

Plot from J. Huchra 

Hubble constant determinations vs. time

Initial determinations of H0

were ~500 km/s/Mpc  (with just 
10% errors)!   Implied ages of the 

universe of ~2 billion years!

Credit: J. Huchra



Why were initial determinations of the 
Hubble constant ~7x too large?

H. Böhringer 15 

Hubble‘s Mistake 

1918 Shapley establishes P-L relation for 11 galactic Cepheides       

(mostly Pop. I (class. Cepheides)  !m ~ 1.5 m zu weaker (half of this 

error due to extinction, other half comes from error in the paralax = 

distance)!

1923 Hubble determines distance to M31:  280 kpc  (230 kpc with 

extinction correction  - modern value  about 700 kpc)!

1952 Baade corrects for these errors and finds difference between 

Pop. I und Pop. II Cepheides, Pop. II Cepheides are much weaker) !

- since this reevaluation of the Hubble constant other large galaxies 

are as bright as our Milky Way !!



 



 
 


 


 












 



 
 





 
 
 









(Hubble had misidentified HII 
regions in other galaxies as single 

stars)



Hubble constant vs. time – what a mess! 

Plot from J. Huchra 

Hubble constant vs. time: post-HST 

Plot from J. Huchra 

Distance Ladder 

•! There are LOTS of different methods, which work over different ranges 
of distances 

•! Absolute/Primary (generally geometric methods) 

–! Parallax (trigonometric, secular, and statistical) 

–! The moving cluster method 

–! Also main sequence fitting to star clusters 

–! Methods that can be applied to larger distances 
•! Baade-Wesselink 

•! Sunyaev-Zel’dovich effect 

•! Gravitational lens time delays 

•! Secondary methods – standard candles 
–! Require a calibration from an absolute method to local objects 

–! Measure apparent magnitudes of objects of known luminosity (or absolute 
magnitude)  

–! Cepheids, RR Lyraes, planetary nebula luminosity function, globular cluster 
luminosity function, surface brightness fluctuations, Tully-Fisher, Dn-#, and 
Type Ia Supernovae 

–! Can find distance from the “distance modulus” 
(m – M) = 5 log (d) – 5 + A, A is the extinction (important and tricky!) 

Distance ladder–- brown=geometric, blue=Pop I, 
   red=Pop II 

Hubble constant determinations vs. time



Hubble constant vs. time – what a mess! 

Plot from J. Huchra 

Hubble constant vs. time: post-HST 

Plot from J. Huchra 

Distance Ladder 

•! There are LOTS of different methods, which work over different ranges 
of distances 

•! Absolute/Primary (generally geometric methods) 

–! Parallax (trigonometric, secular, and statistical) 

–! The moving cluster method 

–! Also main sequence fitting to star clusters 

–! Methods that can be applied to larger distances 
•! Baade-Wesselink 

•! Sunyaev-Zel’dovich effect 

•! Gravitational lens time delays 

•! Secondary methods – standard candles 
–! Require a calibration from an absolute method to local objects 

–! Measure apparent magnitudes of objects of known luminosity (or absolute 
magnitude)  

–! Cepheids, RR Lyraes, planetary nebula luminosity function, globular cluster 
luminosity function, surface brightness fluctuations, Tully-Fisher, Dn-#, and 
Type Ia Supernovae 

–! Can find distance from the “distance modulus” 
(m – M) = 5 log (d) – 5 + A, A is the extinction (important and tricky!) 

Distance ladder–- brown=geometric, blue=Pop I, 
   red=Pop II 

Hubble constant determinations vs. time 
(after observations began with Hubble Space Telescope)

Credit: J. Huchra



How to measure distances to galaxies that 
are > 20 Mpc away?

Need to measure distances of galaxies where peculiar velocities 
don’t have a big effect on cosmological flow....



04.2.28 Chris Pearson :   Observational Cosmology 4: Cosmological Distance Scale - ISAS -2004

34

Cosmological Distance Scale

4.4: The Distance Ladder4.4: The Distance Ladder
The Distance Ladder

RADAR Reflection (0-10AU)

Parallax (0.002-0.5kpc)

Spectroscopic Parallax (0.05-10kpc)

RR Lyrae (5-10kpc)

Cepheid Variables (1kpc-30Mpc)

Tully Fisher (0.5-00Mpc)

Supernova (1-1000Mpc)

1kpc

10kpc

100kpc

1Mpc

10Mpc

100Mpc

1000Mpc

Proxima Centauri (~1pc)

Pleides Cluster (~100pc)

Galactic Centre (~10kpc)

LMC  (~100kpc)

M31  (~0.5Mpc)

Coma (~100Mpc)

Virgo (~10Mpc)

Hubble Sphere (~3000Mpc)

We must use a multi-stage approach to determine distances!

Each stage builds on previous stage!

Or using distance ladder analogy,
each rung of ladder builds on previous 

rung!
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Cosmological Distance Scale

4.4: The Distance Ladder4.4: The Distance Ladder
The Distance Ladder

RADAR Reflection (0-10AU)

Parallax (0.002-0.5kpc)

Spectroscopic Parallax (0.05-10kpc)

RR Lyrae (5-10kpc)

Cepheid Variables (1kpc-30Mpc)

Tully Fisher (0.5-00Mpc)

Supernova (1-1000Mpc)

1kpc

10kpc

100kpc

1Mpc

10Mpc

100Mpc

1000Mpc

Proxima Centauri (~1pc)

Pleides Cluster (~100pc)

Galactic Centre (~10kpc)

LMC  (~100kpc)

M31  (~0.5Mpc)

Coma (~100Mpc)

Virgo (~10Mpc)

Hubble Sphere (~3000Mpc)

We must use a multi-stage approach to determine distances!

Hyades (~46 pc)

Steps in Ladder
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Cosmological Distance Scale

4.4: The Distance Ladder4.4: The Distance Ladder
The Distance Ladder

RADAR Reflection (0-10AU)

Parallax (0.002-0.5kpc)

Spectroscopic Parallax (0.05-10kpc)

RR Lyrae (5-10kpc)

Cepheid Variables (1kpc-30Mpc)

Tully Fisher (0.5-00Mpc)

Supernova (1-1000Mpc)

1kpc

10kpc

100kpc

1Mpc

10Mpc

100Mpc

1000Mpc

Proxima Centauri (~1pc)

Pleides Cluster (~100pc)

Galactic Centre (~10kpc)

LMC  (~100kpc)

M31  (~0.5Mpc)

Coma (~100Mpc)

Virgo (~10Mpc)

Hubble Sphere (~3000Mpc)

We must use a multi-stage approach to determine distances!

Large Magellanic Cloud (~50 kpc)
Dwarf Galaxy (next to Milky Way)

Steps in Ladder
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Cosmological Distance Scale

4.4: The Distance Ladder4.4: The Distance Ladder
The Distance Ladder

RADAR Reflection (0-10AU)

Parallax (0.002-0.5kpc)

Spectroscopic Parallax (0.05-10kpc)

RR Lyrae (5-10kpc)

Cepheid Variables (1kpc-30Mpc)

Tully Fisher (0.5-00Mpc)

Supernova (1-1000Mpc)

1kpc

10kpc

100kpc

1Mpc

10Mpc

100Mpc

1000Mpc

Proxima Centauri (~1pc)

Pleides Cluster (~100pc)

Galactic Centre (~10kpc)

LMC  (~100kpc)

M31  (~0.5Mpc)

Coma (~100Mpc)

Virgo (~10Mpc)

Hubble Sphere (~3000Mpc)

We must use a multi-stage approach to determine distances!

M31 (~700 kpc)
Luminous galaxy in local group of galaxies

5–23

UWarwick
Distance Determination 21

Interlude, III

To get a feel for the distances in our
“neighborhood”:

50 kpc: LMC, SMC, some other dwarf galaxies

700 kpc: M31 (Andromeda)

Palomar Schmidt

Steps in Ladder
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Cosmological Distance Scale

4.4: The Distance Ladder4.4: The Distance Ladder
The Distance Ladder

RADAR Reflection (0-10AU)

Parallax (0.002-0.5kpc)

Spectroscopic Parallax (0.05-10kpc)

RR Lyrae (5-10kpc)

Cepheid Variables (1kpc-30Mpc)

Tully Fisher (0.5-00Mpc)

Supernova (1-1000Mpc)

1kpc

10kpc

100kpc

1Mpc

10Mpc

100Mpc

1000Mpc

Proxima Centauri (~1pc)

Pleides Cluster (~100pc)

Galactic Centre (~10kpc)

LMC  (~100kpc)

M31  (~0.5Mpc)

Coma (~100Mpc)

Virgo (~10Mpc)

Hubble Sphere (~3000Mpc)

We must use a multi-stage approach to determine distances!

Virgo Cluster (~15-20 Mpc)
Most Massive Nearby Cluster of Galaxies

Steps in Ladder
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Cosmological Distance Scale

4.4: The Distance Ladder4.4: The Distance Ladder
The Distance Ladder

RADAR Reflection (0-10AU)

Parallax (0.002-0.5kpc)

Spectroscopic Parallax (0.05-10kpc)

RR Lyrae (5-10kpc)

Cepheid Variables (1kpc-30Mpc)

Tully Fisher (0.5-00Mpc)

Supernova (1-1000Mpc)

1kpc

10kpc

100kpc

1Mpc

10Mpc

100Mpc

1000Mpc

Proxima Centauri (~1pc)

Pleides Cluster (~100pc)

Galactic Centre (~10kpc)

LMC  (~100kpc)

M31  (~0.5Mpc)

Coma (~100Mpc)

Virgo (~10Mpc)

Hubble Sphere (~3000Mpc)

We must use a multi-stage approach to determine distances!

Coma Cluster (~100 Mpc)
Very Massive Nearby Supercluster of Galaxies

credit: Dean Rowe

Steps in Ladder



Primary Methods

(local, primarily geometric)

Parallax (Trigonometric, Secular,
Statistical)

Moving Cluster

Main Sequence Fitting to Star Clusters

Radar Echo
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Cosmological Distance Scale

4.2: Primary Distance Indicators4.2: Primary Distance Indicators
Radar Echo

• Within Solar System, distances measured, with great accuracy, by using radar echo

• (radio signals bounced off planets).

• Only useful out to a distance of ~ 10 AU beyond which, the radio echo is too faint to detect.

1 AU = 149,597,870,691 m1 AU = 149,597,870,691 m

! 

d =
1

2
c"t

Radio Echo
-- Extremely accurate method to measure distances within solar system.

-- Only useful out to ~10 astronomical units (for larger distances, the 
radio echo is too faint to detect!)



Trigonometric Parallax

1 parsec = 3.26 light years
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Cosmological Distance Scale

4.2: Primary Distance Indicators4.2: Primary Distance Indicators
Trigonometric Parallax

Nearest star - Proxima Centauri is at 4.3 light years =1.3 pc " parallax 0.8" 

Smallest parallax angles currently measurable ~ 0.001" " 1000 parsecs 

"  parallax is a distance measure for the local solar neighborhood. 

• Observe a star six months apart,(opposite sides of Sun)

• Nearby stars will shift against background star field

• Measure that shift. Define parallax angle as half this shift

! 

d =
1 AU

tan prads
"
1

p
AU

d p

1 AU

1 radian = 57.3o = 206265"

! 

d =
1

prads

AU =
206265

" " p 
AU

Define a parsec (pc) which is simply 1 pc = 206265 AU =3.26ly.!

A parsec is the distance to a star which has a parallax angle of 1"
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Cosmological Distance Scale

4.2: Primary Distance Indicators4.2: Primary Distance Indicators
Trigonometric Parallax

Nearest star - Proxima Centauri is at 4.3 light years =1.3 pc " parallax 0.8" 

Smallest parallax angles currently measurable ~ 0.001" " 1000 parsecs 

"  parallax is a distance measure for the local solar neighborhood. 

• Observe a star six months apart,(opposite sides of Sun)

• Nearby stars will shift against background star field

• Measure that shift. Define parallax angle as half this shift

! 

d =
1 AU

tan prads
"
1

p
AU

d p

1 AU

1 radian = 57.3o = 206265"

! 

d =
1

prads

AU =
206265

" " p 
AU

Define a parsec (pc) which is simply 1 pc = 206265 AU =3.26ly.!

A parsec is the distance to a star which has a parallax angle of 1"
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Cosmological Distance Scale

4.2: Primary Distance Indicators4.2: Primary Distance Indicators
Trigonometric Parallax

Nearest star - Proxima Centauri is at 4.3 light years =1.3 pc " parallax 0.8" 

Smallest parallax angles currently measurable ~ 0.001" " 1000 parsecs 

"  parallax is a distance measure for the local solar neighborhood. 

• Observe a star six months apart,(opposite sides of Sun)

• Nearby stars will shift against background star field

• Measure that shift. Define parallax angle as half this shift

! 

d =
1 AU

tan prads
"
1

p
AU

d p

1 AU

1 radian = 57.3o = 206265"

! 

d =
1

prads

AU =
206265

" " p 
AU

Define a parsec (pc) which is simply 1 pc = 206265 AU =3.26ly.!

A parsec is the distance to a star which has a parallax angle of 1"

-- Observe same star 6 months apart
-- Star will shift relative to background star field
-- Measure the shift.  Define parallax angle as half 

of this shift

-- Stars with parallax angles of 1 arcsec have a distance of 1 parsec

-- Closest star Proxima Centauri has a parallax of 0.8” and
hence distance of 1.3 parsec = 4.3 light years

1 “ = 1 arcsec = 1/60 arcmin = 1/3600 degree = 4.84814x10-6 radians



Trigonometric Parallax
Best spatial position, parallax, and proper motion measurements 

available thus far are from the Hipparcos Space Astrometry mission 
(1990-1993).

-- 120,000 stars with ~0.001 arcsec astrometric precision, 
0.001 arcsec/yr proper motion precision (Hipparcos catalog)

Hipparcos (1990-1993)

-- The Hipparcos Satellite Launched August 1989;  3-year Mission 
Finished August 1993

-- >1,000,000 stars with ~0.020-0.040 arcsec astrometric 
precision, other photometric information (Tycho catalogue)

-- Effective distance limit ~ 1000 pc ~ 1 kpc

-- Complete to magnitude ~8 with stars out 
to magnitude 12
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Cosmological Distance Scale

4.2: Primary Distance Indicators4.2: Primary Distance Indicators
Trigonometric Parallax

The Hipparcos Space Astrometry Mission 

Precise measurement of the positions, parallaxes and proper motions of the stars. 

•Mission Goals

- measure astrometric parameters 120 000 primary programme stars to precision of  0.002”

-  measure astrometric and two-colour photometric properties of 400 000 additional stars (Tycho Expt.) 

•Launched by Ariane, in August 1989, 

• ~3 year mission terminated August 1993.

•Final Hipparcos Catalogue

• 120 000 stars

•Limiting Magnitude V=12.4mag 

•complete fro V=7.3-9mag

•Astrometry Accuracy 0.001”

•Parallax Accuracy 0.002”



Trigonometric Parallax
The best work on high precision astrometry lies in the 

new GAIA mission (European Space Agency).

Astrometry accurate to 20 micro-arcsec at 15 mag, 
200 micro-arcsec at 20 mag

GAIA (2013-2025?)

Positions, Proper Motions, and Characteristics of a billion stars to 
20 magnitude

Spatial motions and 3D view 
of stars in the Milky Way 

galaxy

Distances to 50 kpc away
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Cosmological Distance Scale

4.2: Primary Distance Indicators4.2: Primary Distance Indicators
Trigonometric Parallax
• GAIA MISSION (ESA launch 2010 - lifetime ~ 5 years)

• Measure positions, distances, space motions, characteristics of one billion stars in our Galaxy.

• Provide detailed 3-d distributions & space motions of all stars, complete to V=20 mag to <10-6”.

• Create a 3-D map of Galaxy.



Moving Cluster Method
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Cosmological Distance Scale

4.2: Primary Distance Indicators4.2: Primary Distance Indicators
Moving Cluster Method

• Hipparcos 3D structure of the Hyades as seen from the Sun in Galactic coordinates.

• X-Y diagram = looking down the X-axis towards the centre of the Hyades.

• Note; Larger spheres = closer stars

• Hyades rotates around the Galactic Z-axis.

• Circle is the tidal radius of 10 pc

• Yellow stars are members of Eggen's moving group (not members of Hyades).

• Time steps are 50.000 years. (Perryman et al. )

Ursa Major Moving Cluster: ~60 stars  23.9pc (78ly)

Scorpius-Centaurus cluster: ~100 stars 172pc (560ly) 

Pleiades: ~ by Van Leeuwen at 126 pc, 410 ly) 

-- Powerful method of measuring 
distances to star clusters moving 

across our field of view.

-- The key concept with this 
approach to look for a convergence 

point in the motions of stars

-- If the stars seem to be converging 
only very gradually to some point in 
the far distance, they are likely very 

far away

-- If the stars seem to be converging 
at a sharp angle to some point very 
close by, the stars are much closer

Illustration of a group of stars moving across our field 
of view, converging to some point in the distance

Closer star cluster
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Cosmological Distance Scale

4.2: Primary Distance Indicators4.2: Primary Distance Indicators
Moving Cluster Method

• Hipparcos 3D structure of the Hyades as seen from the Sun in Galactic coordinates.

• X-Y diagram = looking down the X-axis towards the centre of the Hyades.

• Note; Larger spheres = closer stars

• Hyades rotates around the Galactic Z-axis.

• Circle is the tidal radius of 10 pc

• Yellow stars are members of Eggen's moving group (not members of Hyades).

• Time steps are 50.000 years. (Perryman et al. )

Ursa Major Moving Cluster: ~60 stars  23.9pc (78ly)

Scorpius-Centaurus cluster: ~100 stars 172pc (560ly) 

Pleiades: ~ by Van Leeuwen at 126 pc, 410 ly) 

More distant star cluster



Moving Cluster Method
5–9

UWarwick
Distance Determination 7

Moving Cluster, I

To convergent point

v
vr λ

λ

Sun

Star

µ
Perspective effect of
spatial motion towards
convergent point:

tan λ =
vt

vr
=

µd

vr
(5.2)

or
d

1 pc
=

vr/(1 km/s) tan λ

4.74 µ/(1′′/a)
(5.3)

Problem: determination of convergent point
Less error prone: moving cluster method = rate of variation
of angular diameter of cluster:

θ̇d = θvr (5.4)

Observation of proper motions gives

θ̇

θ
=

dµα

dα
=

dµδ

dδ
(5.5)

where µα,δ proper motion in α and δ, and from Eq. (5.4),

d = vr
θ̇

θ
(5.6)

vr from spectroscopical radial velocity measurements.

So how far away is the star cluster?

d

d = vT/4.74μ = vr(tan λ)/4.74μ

vT=4.74μd,    μ(“/yr),  v T (km/s), d (/pc)

velocity of stars tangential to line of sight

vT = vr tan λ

μ is the “proper angular motion”
-- perpendicular to our sightline 

We can determine it by comparing the
proper angular motion

with vT is the tangential velocity of the stars
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Cosmological Distance Scale

4.2: Primary Distance Indicators4.2: Primary Distance Indicators
Moving Cluster Method

• Hipparcos 3D structure of the Hyades as seen from the Sun in Galactic coordinates.

• X-Y diagram = looking down the X-axis towards the centre of the Hyades.

• Note; Larger spheres = closer stars

• Hyades rotates around the Galactic Z-axis.

• Circle is the tidal radius of 10 pc

• Yellow stars are members of Eggen's moving group (not members of Hyades).

• Time steps are 50.000 years. (Perryman et al. )

Ursa Major Moving Cluster: ~60 stars  23.9pc (78ly)

Scorpius-Centaurus cluster: ~100 stars 172pc (560ly) 

Pleiades: ~ by Van Leeuwen at 126 pc, 410 ly) 

λ

vr is the radial motion of stars
         -- we can measure by measuring Doppler shift

         from spectral lines

λ is angle from star cluster to convergence point

We can compute vT from λ and vr:

vT



Moving Cluster Method
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Cosmological Distance Scale

4.2: Primary Distance Indicators4.2: Primary Distance Indicators
Moving Cluster Method

• Hipparcos 3D structure of the Hyades as seen from the Sun in Galactic coordinates.

• X-Y diagram = looking down the X-axis towards the centre of the Hyades.

• Note; Larger spheres = closer stars

• Hyades rotates around the Galactic Z-axis.

• Circle is the tidal radius of 10 pc

• Yellow stars are members of Eggen's moving group (not members of Hyades).

• Time steps are 50.000 years. (Perryman et al. )

Ursa Major Moving Cluster: ~60 stars  23.9pc (78ly)

Scorpius-Centaurus cluster: ~100 stars 172pc (560ly) 

Pleiades: ~ by Van Leeuwen at 126 pc, 410 ly) 

-- Distances to the Hyades and 
other star clusters have now been 
determined to great accuracy by 
Trigonometric parallax.   So this 
method is primarily of historical 

interest

-- Used in 1920 to determine the 
distance to Hyades (40 pc)

-- Improved in 1960 to 46 pc

-- Compare with Hipparcos 
measurement of 46.3 pc

-- Such measurements were useful for 
calibrating many techniques such as

main sequence fitting technique useful 
to measure distance to the Large 

Magellanic Cloud

Ursa Major 23.9 pc
Scorpius-Centarus cluster 172 pc

Pleiades 126 pc

Also important to 
determine distances to



Light Echos

-- Direct geometric determinations of distance are possible 
using light echos

-- Such a situation occurred in 1987 with a supernovae in the 
Large Magellanic Cloud

5–34

UWarwick
Distance Determination 32

Light echos, I

Light echo: specialized way to determine distance
to LMC using Supernova 1987A.

STScI PR94-22
February 1987: Supernova in Large Magellanic Cloud.
87 d after explosion: Ring of ionized C and N around SN
=⇒ Excitation of C, N in ring-like shell (ejecta from stars
equator during red giant phase?).
Observed size: 1.66′′ × 1.21′′

-- Energy from supernovae excited C and N in ring-like 
structure

-- Time delay between detection of SNe explosion and
echos gives physical size of ring-like structure

-- By comparing the inferred physical size of the structure 
with the angular size of the structure (1.66”), we have the 

distance to the Large Magellanic Cloud

5–35

UWarwick
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Light echos, II

Assuming ring-geometry: direct geometrical
determination of distance to LMC possible:

r sin i

1

i

2

r

r
Time delay SN – close side of ring:

ct1 = r(1 − sin i)

= 86 ± 6 d
(5.21)

Time delay SN – far side of ring:

ct2 = r(1 + sin i)

= 413 ± 24 d
(5.22)

The radius is (Eq. 5.21+Eq. 5.22):

r = c
t1 + t2

2
= 250 ± 12 lt d (5.23)

and the inclination is (Eq. 5.21+Eq. 5.22):

sin i =
t2 − t1

t1 + t2
=⇒ i ∼ 41◦ (5.24)

From ring-geometry: cos i = 1.21′′/1.66′′ =⇒ i ∼ 43◦).
Thus from angular size of ring:

1.66′′ =
r cos i

d
=⇒ d = 52 ± 3 kpc (5.25)
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AS 4022  Cosmology

Distance to Large Magellenic Cloud

• SN 1987a explosion illuminates circumstellar gas ring.

• Light travel time gives linear size.

• Observed angular size then gives distance.

! 

c t0 = D

c t1 " D+ R # Rsini

c t2 " D+ R + Rsini

c t2 # t1( ) = 2R sini

       = 400  light days
Gives D(LMC) = 51 kpc

Checks the Cepheid distances
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Other Primary Methods

-- Eclipsing Binary Stars: From Photometric and Radial Velocity Measurements, the
Fundamental Properties (Radii, Luminosity, Temperature) of the Stars Can Be 
Determined.   By comparing the luminosity of the stars with their brightness, one 
can solve for the distance to the binary star system.

-- Baade-Wesselink Method:  For a Variable Star (With a Time-Varying Radius), one can 
determine the luminosity of the star from the available observations.

L = 4πR2 σb T4

We can infer the temperature of a star from its spectrum (assuming the star is 
roughly a blackbody emittor).   If we could infer its radius R, then we could derive its 
luminosity as

Fortunately, we can measure the velocity at which a variable star is expanding and/or 
contracting from how much its light is Doppler-shifted and hence infer the change in 
radius.

Then R2 = R1 + ∫  v(t) dt

where R1 and R2 are the size of the star at its minimum and maximum size.   Putting this 
constraint together with the fact we can measure its relative brightness at minimum and 
maximum size, we have two equations and two unknowns (R1 and R2).    We can then 
determine the luminosity of a variable star directly and also its distance.



Main-Sequence Fitting
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Cosmological Distance Scale

4.2: Primary Distance Indicators4.2: Primary Distance Indicators
Main sequence Fitting

Einar Hertzsprung & Henry Norris Russell:  Plot stars as function of luminosity & temperature " H-R diagram

Normal stars fall on a single track " Main Sequence
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m "M = 5lgdL ,Mpc + 25Get Distance from the distance modulus

• Useful out to ~few 10s kpc (main sequence stars become too dim)

• used to calibrate clusters with Hyades

Observe distant cluster of stars, 

Apparent magnitudes, m, of the stars form a track parallel to Main Sequence

" correctly choosing the distance, convert to absolute magnitudes, M, that fall on standard Main Sequence. 
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• Useful out to ~few 10s kpc (main sequence stars become too dim)

• used to calibrate clusters with Hyades

Observe distant cluster of stars, 

Apparent magnitudes, m, of the stars form a track parallel to Main Sequence

" correctly choosing the distance, convert to absolute magnitudes, M, that fall on standard Main Sequence. 

-- Stars on the Hydrogen-burning Main Sequence are 
effectively standard candles, exhibiting consistent 

luminosities and colors

HR Diagram

-- Magnitudes for color-magnitude sequence calibrated 
using parallax distances from Hipparcos (Hyades closest

star cluster to use as calibrator)

-- Useful out to a few 10s of kpc (beyond this distance, 
main sequence becomes too faint)...

-- Magnitude shift gives difference in distances:
distance modulus = m1 - m2 = 5 log (D1/D2)

-- Need to correct for dust extinction

Blue (hot) Red (cool)

-- Can be affected by metallicity of stars
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• Useful out to ~few 10s kpc (main sequence stars become too dim)

• used to calibrate clusters with Hyades

Observe distant cluster of stars, 

Apparent magnitudes, m, of the stars form a track parallel to Main Sequence

" correctly choosing the distance, convert to absolute magnitudes, M, that fall on standard Main Sequence. 

HR Diagram

-- Useful out to a few 10s of kpc (beyond this distance, 
main sequence becomes too faint)...

-- Magnitude shift gives difference in distances:
distance modulus = m1 - m2 = 5 log (D1/D2)

-- Need to correct for dust extinction

Blue (hot) Red (cool)

-- Can be affected by metallicity of stars

Somewhat similar technique is that of spectroscopic parallax technique:

 Spectral Types (Prominent Lines): 
   O - He I, HeII
   B - He
   A - H
   F-G - Metals
   K-M - Molecular Lines

Surface Gravity (from pressure 
         causing line broadening): 
    Class I (Supergiants)
    Class V (Dwarfs)

Estimate Temperature from Spectral Type and Mass/Luminosity from 
surface gravity

Distance then from inverse square law
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Cosmological Distance Scale

4.2: Primary Distance Indicators4.2: Primary Distance Indicators
Spectroscopic Parallax

•Surface Gravity " Higher pressure in atmosphere " line broadening, less ionization - Class I(low) -VI (high)

• Class I - Supergiants 

• Class III - Giants

• Class V - Dwarfs

• Class VI - white Dwarfs

Information from Stellar Spectra

• Spectral Type " Surface Temperature - OBAFGKM RNS

• O stars - HeI, HeII

• B Stars - He

• A Stars - H

• F-G Stars - Metals

• K-M Stars - Molecular Lines

! 

L = 4"#T 4R2

L$M
%
(% ~ 3& 4)

g =
GM

R
2

Temperature from spectral type, surface gravity from luminosity class " mass and luminosity.

Measure flux " Distance from inverse square Law
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Secondary methods
(standard candles -- calibrated 
based on primary methods)

Cepheids and RR Lyraes

“often treated as primary methods”



Cepheids

Henrietta Swann Leavitt (1868-1921)!

•! “It is worthy of notice 
that brighter variables 
have longer periods” !

Henrietta Swann Leavitt (1868-1921)!

•! “It is worthy of notice 
that brighter variables 
have longer periods” !

-- One of the most important standard candles for setting up the 
entire distance ladder

-- Very Luminous, pulsating variable stars that lie on the 
instability strip

-- More Luminous Cepheids have 
longer periods

Henrietta Leavitt (1868-1921)

L ~ P1.3

-- Henrietta Leavitt showed that there was a tight period-
luminosity (P-L) relationship for these stars

-- Advantages 
     * Very luminous stars that can be seen from great 

distance in nearby galaxies
* physical origin of the period-luminosity relation 
well understood

-- Disadvantages

* Relative Rare
* Multi-epoch observations are necessary -- since need to 
determine period of cepheids
* Light from these galaxies can be affected by dust 
extinction and so corrections need to be made.



Cepheids

Henrietta Swann Leavitt (1868-1921)!

•! “It is worthy of notice 
that brighter variables 
have longer periods” !

Henrietta Swann Leavitt (1868-1921)!

•! “It is worthy of notice 
that brighter variables 
have longer periods” !

-- Cepheid Luminosities are typically calibrated using those in 
the Large Magellanic Clouds

-- More Luminous Cepheids have 
longer periods

Henrietta Leavitt (1868-1921)

-- Uncertainties:

* Luminosity of the brightest Cepheids may deviate 
from P-L relationship
* Luminosity exhibits slight dependence on metallicity of 
star



RR-Lyraes
— Less luminous, pulsating variable stars that lie on the 

instability strip

— Pulsation periods much shorter, so require less 
observing time to find 
     

Prototypical RR Lyrae light curve 
P=0.5668 days   

Globular Cluster Luminosity Function 

•! GC’s have a characteristic luminosity function with a well defined peak 

•! The globular cluster luminosity function (GCLF) is roughly gaussian with 

a well-defined peak (MB = -6.6 +/- 0.26) 

•! GC’s are (obviously!) a Pop II indicator, no dust! 

•! Advantages – GCs are luminous, easy to find in elliptical galaxies, 

measuring the GCLF turnover possible out to 200 Mpc 

•! Disadvantages – can’t be used for late-type galaxies (Sc’s and later) as 
GC’s are rare.  Need deep photometry to detect GCLF turnover.  There 

is a slight metallicity dependence.  Not as precise as other methods (+/- 

0.3 mag) 

•! GCLF is empirical, physical basis not well-understood 

GCLF for galactic globular clusters, Abraham & van den bergh (1995) 

GCLF for Virgo cluster, Jacoby et al. 1992 

Typical Oscillation Pattern for RR-
Lyraes (0.6 days)

— Found predominantly amongst older stellar 
populations
     

— Therefore useful to derive distances to globular 
clusters
     

— Because of their low luminosities (factor of >6 fainter 
than Cepheids), only useful to measure distances to M31 
    (~1 Mpc away).



Large Magellanic Cloud

-- Large Magellanic Cloud is an extremely important 
rung in the distance ladder

Large Magellanic Cloud (~50 kpc)
Dwarf Galaxy (next to Milky Way)

-- Calibrated by Light Echos

-- Calibrated by Main Sequence Fitting

-- Calibrated by RR Lyrae

“anchor point”



Large Magellanic Cloud
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Cepheids and RR Lyraes

Planetary Nebula LF

Globular Cluster LF

 Brightest Stars

Surface Brightness Fluctuations

Type Ia Supernovae

Dn-σ

Tully-Fisher and Faber Jackson

Secondary methods

(calibrated based on primary methods)



Cepheids and RR Lyraes

Planetary Nebula LF

Globular Cluster LF

 Brightest Stars

Surface Brightness Fluctuations

Type Ia Supernovae

Dn-σ

Tully-Fisher and Faber Jackson

Secondary methods

(calibrated based on primary methods)

Some techniques 
are particularly 

relevant to 
systems that are 
actively forming 

stars

Other techniques 
are particularly 

relevant to 
systems with lots 

of old stars

For other 
techniques are 

useful for systems 
with either old or 

young stars



Cepheids and RR Lyraes

Planetary Nebula LF

Globular Cluster LF

 Brightest Stars

Surface Brightness Fluctuations

Type Ia Supernovae

Dn-σ

Tully-Fisher and Faber Jackson

Secondary methods

(calibrated based on primary methods)

Some techniques 
are based on 

standard candles

Other techniques 
are based on the 
idea of a standard 

rod



For a standard candle

Distance = (Lcandle/(4π f))1/2

f = flux

Distance = Rstandard-rod / θ
For a standard rod

θ = angle subtended by source 
on sky



For the standard candle 
approaches

Some are based on the luminosity function (volume 
density as a function of luminosity) of bright sources: 

Planetary Nebula LF

Globular Cluster LF

 Brightest Stars

For each population, there is 
some clear feature in the 

luminosity function that one 
can pick out in distant objects



For the standard candle 
approaches

Some are based on the luminosity function (volume 
density as a function of luminosity) of bright sources: 

All of the objects below are visible at great distances

Planetary Nebula LF

Globular Cluster LF

 Brightest Stars

Late stages of stellar evolution

Compact Old Star Clusters

Most luminous red giant stars



For the standard candle 
approaches

Some are based on the luminosity function (volume 
density as a function of luminosity) of bright sources: 

Planetary Nebula LF

Globular Cluster LF

Brightest Stars

PNLF for various galaxies  
Jacoby et al. 1992 

PNLF cutoff mag vs. metallicity 

Tip of the Red Giant Branch 

•! Brightest stars in old stellar populations are red giants 

•! In I-band, MI = -4.1 +/- 0.1 = constant for the tip of the red giant branch 

(TRGB) IF stars are old and metal-poor ([Fe/H]<-0.7) 

•! These conditions are met for dwarf galaxies and galactic halos 

•! Advantages – relatively bright, reasonably precise, RGB stars are 

plentiful.  Extinction problems are reduced. 

•! Does not rely on the distance to the LMC for calibration! 

•! Disadvantages – Only good out to d~15 Mpc (Virgo), only works for old, 

metal-poor populations. 

•! Calibration relies on subdwarf parallaxes from Hipparcos and distances 

to galactic GCs which are somewhat uncertain 

TRGB 
MI = -4.1 +/- 0.1   

does vary with 
[Fe/H] for metal-rich 
populations 

PNLF for various galaxies  
Jacoby et al. 1992 

PNLF cutoff mag vs. metallicity 

Tip of the Red Giant Branch 

•! Brightest stars in old stellar populations are red giants 

•! In I-band, MI = -4.1 +/- 0.1 = constant for the tip of the red giant branch 

(TRGB) IF stars are old and metal-poor ([Fe/H]<-0.7) 

•! These conditions are met for dwarf galaxies and galactic halos 

•! Advantages – relatively bright, reasonably precise, RGB stars are 

plentiful.  Extinction problems are reduced. 

•! Does not rely on the distance to the LMC for calibration! 

•! Disadvantages – Only good out to d~15 Mpc (Virgo), only works for old, 

metal-poor populations. 

•! Calibration relies on subdwarf parallaxes from Hipparcos and distances 

to galactic GCs which are somewhat uncertain 

TRGB 
MI = -4.1 +/- 0.1   

does vary with 
[Fe/H] for metal-rich 
populations 

Approximate 
Cut-off

Number

Planetary Nebula LF

Look for characteristic feature



For the standard candle 
approaches

Some are based on the luminosity function (volume 
density as a function of luminosity) of bright sources: 

Planetary Nebula LF  → ~ maximum luminosity

Globular Cluster LF → ~ central luminosity

 Brightest Stars → ~ maximum luminosity

What do we look for in LF?



Planetary Nebula

-- Near end stages of stellar evolution for 
stars with initial mass 0.8-8.0 Msun

-- Easily detectable to great distances due to 
existence of strong emission lines in 

spectrum

-- PN LF calibrated using PN in M31

-- Identified using [OIII] 5007 narrow band 
filter

-- Useful out to 40 Mpc (>Virgo)

-- Physical Basis Fairly Well Understood 
from stellar evolution

Planetary Nebula Luminosity Function 

•! Planetary nebula are stars which have ejected outer layers of 
gas, evolved red giant stars 

•! They emit strongly in [OIII]$5007 so they are easy to find using 
narrow-band filters 

•! Technique was developed by Robin Ciardullo (here at Penn 
State) and George Jacoby (at NOAO) 

•! Planetary Nebula Luminosity function (PNLF) has a 
characteristic sharp cutoff at the bright end which can be used as 
a standard candle 

•! M* (5007) = -4.48 +/- 0.04 

•! PNe are found in all Hubble Types (but requires a small 
metallicity correction) 

•! Calibration based on M31, somewhat uncertain 

•! Only useful out to ~16 Mpc (Virgo) 

•! Physical basis fairly well-understood from stellar evolution 
Typical PN spectrum, note the strong 
[OIII]$5007 emission! 

Over 10% of the total energy of a PN central star comes out in a 
single emission line.  This is the forbidden “nebular” line of 
doubly ionized oxygen at  5007 Å.   

By viewing a galaxy through a ~50 Å wide filter centered on this 
line, and again through an “offband” filter, bright PN can be 
identified out to ~20 Mpc with 4-m class telescopes. 

[O III] !5007 (on-band) !5300 (offband) 

[O III] !5007 Difference   

Typical PN spectrum

-- Cut-off can show some dependence on 
metallicity

-- Luminosity Function (LF) shows a sharp 
cut-off at some characteristic luminosity

PNLF for various galaxies  
Jacoby et al. 1992 

PNLF cutoff mag vs. metallicity 

Tip of the Red Giant Branch 

•! Brightest stars in old stellar populations are red giants 

•! In I-band, MI = -4.1 +/- 0.1 = constant for the tip of the red giant branch 

(TRGB) IF stars are old and metal-poor ([Fe/H]<-0.7) 

•! These conditions are met for dwarf galaxies and galactic halos 

•! Advantages – relatively bright, reasonably precise, RGB stars are 

plentiful.  Extinction problems are reduced. 

•! Does not rely on the distance to the LMC for calibration! 

•! Disadvantages – Only good out to d~15 Mpc (Virgo), only works for old, 

metal-poor populations. 

•! Calibration relies on subdwarf parallaxes from Hipparcos and distances 

to galactic GCs which are somewhat uncertain 

TRGB 
MI = -4.1 +/- 0.1   

does vary with 
[Fe/H] for metal-rich 
populations 

PNLF for various galaxies  
Jacoby et al. 1992 

PNLF cutoff mag vs. metallicity 

Tip of the Red Giant Branch 

•! Brightest stars in old stellar populations are red giants 

•! In I-band, MI = -4.1 +/- 0.1 = constant for the tip of the red giant branch 

(TRGB) IF stars are old and metal-poor ([Fe/H]<-0.7) 

•! These conditions are met for dwarf galaxies and galactic halos 

•! Advantages – relatively bright, reasonably precise, RGB stars are 

plentiful.  Extinction problems are reduced. 

•! Does not rely on the distance to the LMC for calibration! 

•! Disadvantages – Only good out to d~15 Mpc (Virgo), only works for old, 

metal-poor populations. 

•! Calibration relies on subdwarf parallaxes from Hipparcos and distances 

to galactic GCs which are somewhat uncertain 

TRGB 
MI = -4.1 +/- 0.1   

does vary with 
[Fe/H] for metal-rich 
populations 

Approximate 
Cut-off

Volume 
Density



Globular Cluster Luminosity Function

Prototypical RR Lyrae light curve 
P=0.5668 days   

Globular Cluster Luminosity Function 

•! GC’s have a characteristic luminosity function with a well defined peak 

•! The globular cluster luminosity function (GCLF) is roughly gaussian with 

a well-defined peak (MB = -6.6 +/- 0.26) 

•! GC’s are (obviously!) a Pop II indicator, no dust! 

•! Advantages – GCs are luminous, easy to find in elliptical galaxies, 

measuring the GCLF turnover possible out to 200 Mpc 

•! Disadvantages – can’t be used for late-type galaxies (Sc’s and later) as 
GC’s are rare.  Need deep photometry to detect GCLF turnover.  There 

is a slight metallicity dependence.  Not as precise as other methods (+/- 

0.3 mag) 

•! GCLF is empirical, physical basis not well-understood 

GCLF for galactic globular clusters, Abraham & van den bergh (1995) 

GCLF for Virgo cluster, Jacoby et al. 1992 

GCLF for Virgo cluster, Jacoby et al. 1992

-- Useful for measuring distances to ~200 Mpc

-- The luminosity function of global clusters is 
approximately gaussian with a well-defined peak

-- Advantages:

* Luminous, easy to find

* No dust

-- Disadvantages:
* Later Galaxies on Hubble Sequence have 

many fewer globular clusters, so not 
practical for these systems

* Physical Basis Not Well Understood

* Can depend on luminosity, galaxy type

* Peak Luminosity shows moderate scatter  
(~0.3 mag), not best technique



Brightest Stars

-- Brightest stars in galaxies are red giants

-- Potential contamination of nearby galaxy by chance 
alignment with stars in our own galaxy (in the halo)

-- Because of the limited brightness of red giant 
stars, cannot be used beyond Virgo cluster at 15 

Mpc

-- The luminosity of these stars do not vary 
substantially from galaxy to galaxy, if stars are 

old and metal poor

-- Stars are reasonably bright and are plentiful 
in older galaxies, so it is easy to apply to such 

systems

-- Only useful for measuring distances to older 
galaxies
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• Useful out to ~few 10s kpc (main sequence stars become too dim)

• used to calibrate clusters with Hyades

Observe distant cluster of stars, 

Apparent magnitudes, m, of the stars form a track parallel to Main Sequence

" correctly choosing the distance, convert to absolute magnitudes, M, that fall on standard Main Sequence. 



-- Because of the limited brightness of red giant 
stars, cannot be used beyond Virgo cluster at 15 

Mpc

Brightest Stars

-- Brightest stars in galaxies are red giants

-- Potential contamination of nearby galaxy by chance 
alignment with stars in our own galaxy (in the halo)

-- The luminosity of these stars do not vary 
substantially from galaxy to galaxy, if stars are 

old and metal poor

-- Stars are reasonably bright and are plentiful 
in older galaxies, so it is easy to apply to such 

systems

-- Only useful for measuring distances to older 
galaxies
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• Useful out to ~few 10s kpc (main sequence stars become too dim)

• used to calibrate clusters with Hyades

Observe distant cluster of stars, 

Apparent magnitudes, m, of the stars form a track parallel to Main Sequence

" correctly choosing the distance, convert to absolute magnitudes, M, that fall on standard Main Sequence. 

The Brightest Star Technique Was Even Used by Edwin Hubble.

However, it was not used correctly -- since Hubble was not looking
at individual stars!



 



  










 

















        






















Hubble was seeing HII regions (ionised gas 
around young stars)!

These are much brighter than individual 
stars!

Difference = 2 mag



Type Ia Supernovae Exploding stars: Calibrate based on 
decay time of light curve

For the standard candle 
approaches

Some are based on sources having a given luminosity 
that we can calculate based on its properties

Tully-Fisher

Faber Jackson

Galaxies: Calibrate based on 
rotational velocities or internal 

velocities

(disk galaxies)

(elliptical galaxies)



Intrinsic correlations for spiral galaxies

Absolute Magnitude = Luminosity

Rotation 
Velocity

Tully-Fisher Relationship



Intrinsic correlations for elliptical galaxies

Absolute Magnitude = Luminosity

Velocity 
Dispersion

Faber-Jackson Relationship



Rotational Velocity Measurements

Rotation 
Velocity



Velocity Dispersion Measurements



Supernovae Ia

-- Will discuss in much more detail in ~1-2 weeks
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Supernova Ia Measurements

SN1994D in NGC4526

White dwarf pushed over Chandrasekhar limit by accretion

begins to collapse against the weight of gravity, but rather than

collapsing , material is ignited consuming the star in an an

explosion 10-100 times brighter than a Type II supernova

Supernova !

Massive star M>8Mo

Type Ib,c (H poor massive Star M>8Mo)

Stellar wind or stolen by companion
Type Ia (M~1.4Mo White Dwarf + companion)

Type II (Hydrogen Lines) Type I (no Hydrogen lines)

(similarly applied to novae)
-- Likely occurs when a white dwarf is pushed 
over the Chandrashekhar limit of >1.4 Msolar 

by accretion from a nearby companion

-- All SNIa explosions have very similar 
luminosity.   Therefore, it is useful as a 

standard candle

-- Disadvantages: SNIa explosions are 
somewhat rare and therefore it is difficult to 
use to measure the distance to a given galaxy

-- Advantages: Since SNIa are among the brightest 
standard candles, it can be employed out to great 
distances.   In fact, it is now being used to measure 
distances to galaxies with redshifts of z~2 (>3 Gpc 

away).

Accretion of matter from a nearby 
companion onto a white dwarf



Relation of Galaxy Diameter Dn to 
the scatter in its internal velocities

Dn-σ

(due to common formation mechanism for galaxies)

Surface 
Brightness 

Fluctuations

Approximately fixed surface density of 
bright stars in galaxy.  Fluctuations in 
this density tell us how many bright 

stars there are per pixel 

For the standard rod 
 approaches

Based on the empirical relationship of the size to the 
internal properties of galaxies



Intrinsic correlations for elliptical galaxies

velocity dispersion

Diameter



Surface Brightness Fluctuations

-- Surface brightness of old galaxies dominated by ultra-
bright red giant stars

-- Physical Surface density of such ultra-bright red giant 
stars is relatively constant

-- If you are close to such a galaxy, you would 
expect it to look grainy with discrete bright stars
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Surface Brightness Fluctuations

SBF method

Measure fluctuation in brightness across the face of elliptical galaxies

Fluctuations - due to counting statistics of individual stars in each resolution element (Tonry & Schneider 1988)

Consider 2 images taken by CCD to illustrate the SBF effect; 

Represent 2 galaxies with one twice further away as the other

 measure

 the mean flux per pixel (surface brightness) 

 rms variation in flux between pixels.

! 

µ = NS

! 

" = NS#
1

d

! 

N " d2

S" d#2

$ 
% 
& 

µ is independent of distance

! 

S =
" 2

µ
=

L

4#d2
$ d

Can use out to 70 Mpc with HST

Compare nearby dwarf galaxy, nearby giant galaxy, far giant galaxy

Choose distance such that flux is identical to  nearby dwarf.

The distant giant galaxy has a much smoother image than nearby dwarf.’

-- If you are far from such a galaxy, you would 
expect it to look smoother
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Can use out to 70 Mpc with HST

Compare nearby dwarf galaxy, nearby giant galaxy, far giant galaxy

Choose distance such that flux is identical to  nearby dwarf.

The distant giant galaxy has a much smoother image than nearby dwarf.’



Surface Brightness Fluctuations

-- It is possible to quantify the smoothness of such objects by looking 
at the fluctuations in the pixel surface brightnesses

-- A useful way of modeling the fluctuations in the surface 
brightness is using the Poissonian distribution where r

P(N) = e-μ (μN / N!)

where μ is the mean number of stars per pixel

Larger Fluctuations ⇒ Nearby Galaxies
Smaller Fluctuations ⇒ More Distant Galaxies
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Larger Fluctuations Smaller Fluctuations

-- The standard deviation σ is μ1/2

-- The relative fluctuations are μ1/2/μ ~ μ-1/2



Surface Brightness Fluctuations
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Choose distance such that flux is identical to  nearby dwarf.
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-- Strong Wavelength and Color Dependence (ultra-
bright stars are red),  so calibration is necessary

-- Can Measure Distance Reliably to ~70 Mpc with
the Hubble Space Telescope

Larger Fluctuations Smaller Fluctuations


