
Chapter 9

Cosmic Structures

9.1 Quantifying structures

9.1.1 Introduction

• We have seen before that there is a very specific prediction for
the power spectrum of density fluctuations in the Universe, char-
acterised by (2.23). Recall that its shape was inferred from the
simple assumption that the mass of density fluctuations entering
the horizon should be independent of the time when they enter
the horizon, and from the fact that perturbation modes entering
during the radiation era are suppressed until matter begins domi-
nating.

• Given the simplicity of the argument, and the corresponding
strength of the prediction, it is very important for cosmology to
find out whether the actual power spectrum of matter density fluc-
tuations does in fact have the expected shape, and furthermore to
determine the only remaining parameter, namely the normalisa-

tion of the power spectrum (this is discussed later in chapter 11).

• Since the location k0 of the maximum in the power spectrum is de-
termined by the horizon radius at matter-radiation equality (2.21),

k0 =
2π
req
=

2
√

2πH0

c

√
Ωm0

a
3/2
eq
, (9.1)

and the scale factor at equality is

aeq =
Ωr0

Ωm0
, (9.2)

the peak scale provides a measure of the matter-density param-
eter, k0 ∝ Ωm0. A measurement of k0 would thus provide an
independent and very elegant determination of Ωm0.
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• Since the power spectrum is defined in Fourier space, it is not ob-
vious how it can be measured. In a brief digression, we shall first
summarise the relation between the power spectrum and the cor-
relation function in configuration space, and clarify the meaning
of the correlation function.

9.1.2 Power spectra and correlation functions

• The definition (2.22) shows that the power spectrum is given by
an average over the Fourier modes of the density contrast. This
average extends over all Fourier modes with a wave number k,
i.e. it is an average over all directions in Fourier space keeping
k constant. In other words, Fourier modes are averaged within
spherical shells of radius k.

• In configuration space, structures can be quantified by the (two-
point) correlation function

ξ(x) ≡ �δ(�y)δ(�x + �y)� , (9.3)

where the average is now taken over all positions �y and all ori-
entations of the separation vector �x, assuming homogeneity and
isotropy.

• Inserting the Fourier expansion

δ(�x) =
�

d3
k

(2π)3 δ̂(�k)e−i�k�x (9.4)

of the density contrast into (9.3), using the definition (2.22) of the
power spectrum and taking into account that the Fourier transform
δ̂ must obey δ̂(−�k) = δ̂∗(�k) because δ is real, it is straightforward
to show that the correlation function ξ is the Fourier transform of
the power spectrum,

ξ(x) =
�

d3
k

(2π)3 P(k)e−i�k�x . (9.5)

• Assuming isotropy, the integral over all relative orientations be-
tween �x and �k can be carried out, yielding

ξ(x) =
1

2π2

� ∞

0
P(k)

sin kx

kx
k

2dk , (9.6)

whose inverse transform is

P(k) = 4π
� ∞

0
ξ(x)

sin kx

kx
x

2dx . (9.7)

This indicates one way to determine the power spectrum via mea-
suring the correlation function ξ(x).
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9.1.3 Measuring the correlation function

• How can the correlation function be measured? Obviously, we
cannot measure the correlation function of the density field di-
rectly. All we can do is using galaxies as tracers of the underlying
density field and use their correlation function as an estimate for
that of the matter.

The correlation function quantifies
the probability to find a galaxy in
the small volume dV2 if there is a
galaxy in the small volume dV1, a
distance r = |�r2 − �r1| away.

• Suppose we divide space into cells of volume dV small enough to
contain at most a single galaxy. Then, the probability of finding
one galaxies in dV1 and another galaxy in dV2 is

dP = �n(�x1)n(�x2)�dV1dV2 , (9.8)

where n is the number density of the galaxies as a function of
position.

• If we introduce a density contrast for the galaxies in analogy to
the density contrast for the matter,

δn ≡ n

n̄
− 1 , (9.9)

and assume for now that δn = δ, we find from (9.8) with n =

n̄(1 + δ)

dP = n̄
2�(1 + δ1)(1 + δ2)�dV1dV2 = n̄

2[1 + ξ(x)]dV1dV2 , (9.10)

where x is the distance between the two volume elements. This
shows that the correlation function quantifies the excess probabil-
ity above random for finding galaxy pairs at a given distance.

Correlations between points can be
determined by counting pairs.• Thus, the correlation function can be measured by counting

galaxy pairs and comparing the result to the Poisson expectation,
i.e. to the pair counts expected in a random point distribution.
Symbolically,

1 + ξ1 =
�DD�
�RR� , (9.11)

where D and R represent the data and the random point set, re-
spectively.

• Several other ways of measuring ξ have been proposed, such as

1 + ξ2 =
�DD�
�DR� ,

1 + ξ3 =
�DD��RR�
�DR�2 ,

1 + ξ4 = 1 +
�(D − R)2�
�RR�2 , (9.12)

which are all equivalent in the ideal situation of an infinitely ex-
tended point distribution. For finite point sets, ξ3 and ξ4 are supe-
rior to ξ1 and ξ2 due to their better noise properties.
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• The recipe for measuring ξ(x) is thus to count pairs separated by
x in the data D and in the random point set R, or between the data
and the random point set, and to use one of the estimators given
above.

• The obvious question is then how accurately ξ can be determined.
The simple expectation in the absence of clustering is

�ξ� = 0 , �ξ2� = 1
Np
, (9.13)

where Np is the number of pairs found. Thus, the Poisson error
on the correlation function is

∆ξ

1 + ξ
=

1
�

Np
. (9.14)

• This is a lower limit to the actual error, however, because the
galaxies are in fact correlated. It turns out that the result (9.14)
should be multiplied with 1+ 4πn̄J3, where J3 is the volume inte-
gral over ξ within the galaxy-survey volume. The true error bars
on ξ are therefore hard to estimate.

• Having measured the correlation function, it would in principle
suffice to carry out the Fourier transform (9.7) to find P(k), but
this is difficult in reality because of the inevitable sample limita-
tions. Consider (9.6) and an underlying power spectrum of CDM
shape, falling off ∝ k

−3 for large k, i.e. on small scales. For fixed
x, the integrand in (9.6) falls off very slowly, which means that a
considerable amount of small-scale power is mixed into the cor-
relation function. Since ξ at large x is small and most affected by
measurement errors, this shows that any uncertainty in the large-
scale correlation function is propagated to the power spectrum
even on small scales.

• A further problem is the uncertainty in the mean galaxy number
density n̄. Since 1 + ξ ∝ n̄

−1 according to (9.10), the uncertainty
in ξ due to an uncertainty in n̄ is

∆ξ

1 + ξ
≈ ∆ξ = ∆n̄

n̄
, (9.15)

showing that ξ cannot be measured with an accuracy better than
the relative accuracy of the mean galaxy density.

9.1.4 Measuring the power spectrum

• Given these problems with real data, it seems appropriate to esti-
mate the power spectrum directly. The function to be transformed
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is the density field sampled by the galaxies, which can be repre-
sented by a sum of Dirac delta functions centred on the locations
of the N galaxies,

n(�x) =
N�

i=1

δD(�x − �xi) . (9.16)

• The Fourier transform of the density contrast is then

δ̂(�k) =
1
N

N�

i=1

ei�k�xi . (9.17)

In the absence of correlations, the Fourier phases of the individual
terms are independent, and the variance of the Fourier amplitude
for a single mode becomes

�δ̂(�k)δ̂∗(�k)� = 1
N2

N�

i=1

ei�k�xie−i�k�xi =
1
N
. (9.18)

This is the so-called shot noise present in the power spectrum due
to the discrete sampling of the density field.

• The shot-noise contribution needs to be subtracted from the power
spectrum of the real, correlated galaxy distribution,

P(k) =
1
m

�
|δ̂(�k)|2 − 1

N
, (9.19)

where the sum extends over all m modes contained in the survey
with wave number k.

• This is not the final result yet, because any real survey typically
covers an irregularly shaped volume from which parts need to be
excised because they are overshone by stars or unusable for any
other reasons. The combined effect of mask and irregular survey
volume is described by a window function f (�x) which multiplies
the galaxy density,

n(�x)→ f (�x)n(�x) , (1 + δ)→ f (�x)(1 + δ) , (9.20)

implying that the Fourier transform of the mask needs to be sub-
tracted.

• Moreover, the Fourier convolution theorem says that the Fourier
transform of the product f (�x)δ(�x) is the convolution of the Fourier
transforms f̂ (�k) and δ̂(�k),

�f δ = f̂ ∗ δ̂ ≡
�

f̂ (�k�)δ̂(�k� − �k)d3
k
� . (9.21)
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If the Fourier phases of f̂ and δ̂ are uncorrelated, which is the case
if the survey volume is large enough compared to the size 2π/k
of the density mode, this translates to a convolution of the power
spectrum,

Pobs = Ptrue ∗ | f̂ (�k)|2 . (9.22)

• This convolution typically has two effects; first, it smooths the
observed compared to the true power spectrum, and second, it
changes its amplitude. The corresponding correction is given by

P(k)→ P(k)
(
�

f d3
x)2

�
f 2d3x

�
d3x

. (9.23)

• If the Poisson error dominates in the survey, the different modes
δ̂(�k) can be shown to be uncorrelated, and the standard deviation
after summing over the m modes with wave number k is

√
2m/N,

which yields the minimal error bar to be attached to the power
spectrum.

• Thus, the shot noise contribution and the Fourier transform of
the window function need to be subtracted, the window function
needs to be deconvolved, and the amplitude needs to be corrected
for the effective volume covered by the window function before
the measured power spectrum can be compared to the theoretical
expectation.

• Finally, it is usually appropriate to assign weights 0 ≤ wi ≤ 1 to
the individual galaxies to account for their varying density. The
optimal weight for the ith galaxy sampling a Fourier mode with
wave number k has been determined to be

wi(k) =
1

1 + n̄iP(k)
, (9.24)

where n̄i is the local mean density around the ith galaxy, and
P(k) is the power spectrum. If the density is low, the galaxies
are weighted equally, and less if the local density is very high,
because the many galaxies from a dense environment might oth-
erwise suppress information from galaxies in less dense regions.

• Including weights, eqs. (9.17) and (9.18) become

δ̂(�k) =
�
wiei�k�xi

�
wi

, �|δ̂(�k)|2� =
�
w2

i

(
�
wi)2 . (9.25)

• A final problem due to the finite size of the survey regards the
normalisation of the power spectrum. The mean density estimate
within the survey volume does not necessarily equal the true mean
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density. Since, by definition, the mean of the density contrast δ�
within the survey vanishes, we must have

δ� = δ −
�

f (�x)δ(�x)d3
x , (9.26)

where δ is the true density contrast. Thus, the constant mean value
of δ within the (masked) survey volume is subtracted.

• Subtracting a constant gives rise to a delta-function peak at k = 0
in the Fourier-transformed density contrast, and thus also in the
power spectrum P

� estimated from the survey.

• The observed power spectrum, however, is a convolution of the
true power spectrum, as shown in (9.22). Thus, the delta-function
peak caused by the misestimate of the mean density also needs
to be convolved, giving rise to a contribution P(0) ∗ | f̂ (�k)|2 in the
observed power spectrum.

• Since the mean density contrast δ� within the survey is zero, the
observed power spectrum at k = 0 must vanish, thus

P
�
obs(k) = Pobs(k) − Pobs(0) ∗ | f̂ (�k)|2 . (9.27)

9.1.5 Biasing

• What we have determined so far is the power spectrum of the
galaxy number-density contrast δn rather than that of the matter

density contrast δ. Simple models for the relation between both
assume that there is a so-called bias factor b(k) between them,
such that

�δn(�k) = b(k)δ̂(�k) , (9.28)

where b(k) may or may not be more or less constant as a function
of scale.

• Clearly, different types of objects sample the underlying matter
density field in different ways. Galaxy clusters, for instance, are
much more rare than galaxies and are thus expected to have a
substantially higher bias factor than galaxies.

• Obviously, the bias factor enters squared into the power spectrum,
e.g.

Pgal = b
2
gal(k) P(k) . (9.29)

It constitutes a major uncertainty in the determination of the mat-
ter power spectrum from the galaxy power spectrum.
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9.1.6 Redshift-space distortions

• Of course, for the estimate (9.17) of the Fourier-transformed
(galaxy) density contrast, the three-dimensional positions �xi of
the galaxies in the survey need to be known. Distances can be
inferred only from the galaxy redshifts and thus from galaxy ve-
locities.

• These, however, are composed of the Hubble velocities, from
which the distances can be determined, and the peculiar veloc-
ities,

v = vHubble + vpec , (9.30)

which are caused by local density perturbations and are unrelated
to the galaxy densities.

• Since observations of individual galaxies do not allow any sep-
aration between the two velocity components, distances are in-
ferred from the total velocity v rather than the Hubble velocity as
it should be,

D =
v

H0
=
vHubble + vpec

H0
= Dtrue + ∆D , (9.31)

giving rise to a distance error δD = vpec/H0, the so-called redshift-

space distortion.
Peculiar velocities give rise to
redshift-space distortions, whose
characteristic shape constrains the
bias.

• Fortunately, the redshift-space distortions have a peculiar pat-
tern through which they can be corrected. Consider a matter
overdensity such as a galaxy cluster, containing galaxies moving
with random virial velocities in it. The virial velocities of order
1000 km s−1 scatter around the systemic cluster velocity and thus
widen the redshift distribution of the cluster galaxies. In redshift
space, therefore, the cluster appears stretched along the line-of-
sight, which is called the finger-of-god effect.

• In addition, the cluster is surrounded by an infall region, in which
the galaxies are not virialised yet, but move in an ordered, radial
pattern towards the cluster. Galaxies in front of the cluster thus
have higher, and galaxies behind the cluster have lower recession
velocities compared to the Hubble velocity, leading to a flattening
of the infall region in redshift space.

• A detailed analysis shows that the redshift-space power spectrum
Pz is related to the real-space power spectrum P by

Pz(k) = P(k)
�
1 + βµ2

�2
, (9.32)

where µ is the direction cosine between the line-of-sight and the
wave vector �k, and β is related to the bias parameter b through

β ≡ f (Ωm)
b
, (9.33)
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and f (Ωm) is the logarithmic derivative of the growth factor
D+(a),

f (Ωm) ≡ d ln D+(a)
d ln a

≈ Ω0.6
m . (9.34)

• Thus, the characteristic pattern of the redshift-space distortions
around overdensities allows a measurement of the bias factor.
Another way of measuring b is based upon gravitational lensing.
Corresponding measurements of b show that it is in fact almost
constant or only weakly scale-dependent, and that it is very close
to unity for “ordinary” galaxies.

9.1.7 Baryonic acoustic oscillations

• As we have seen in the discussion of the CMB, acoustic oscil-
lations in the cosmic fluid have left density waves in the cosmic
baryon distribution. Their characteristic wave length is set by the
sound horizon at decoupling (7.26), rs ≈ 63 kpc. By now, this was
increased by the cosmic expansion to 1280 × 63 kpc ≈ 80.6 Mpc,
or k0 ≈ 0.078 Mpc−1.

• This must be compared to the horizon size at matter-radiation
equality (2.21). With aeq ≈ 6200 from (7.7), we find req ≈
11.0 kpc, which was stretched by now to 6200 × 11.0 kpc ≈
68.3 Mpc, or ks ≈ 0.092 Mpc−1.

Top: The telescope dedicated to
the Sloan Digital Sky Survey. Bot-

tom: The two-degree field camera
in the prime focus of the Anglo-
Australian Telescope.

• Thus, the peak scale of the power spectrum and the wavelength of
the fundamental mode of the baryonic acoustic oscillations are of
comparable size. Near the peak of the power spectrum, we thus
expect a weak wave-like imprint on top of the otherwise smooth
dark-matter power spectrum.

9.2 Measurements and results

9.2.1 The power spectrum

• Spectacularly successful measurements of the power spectrum
became recently possible with the two largest galaxy surveys to
date, the Two-Degree Field Galaxy Redshift Survey (2dFGRS)
and the Sloan Digital Sky Survey (SDSS).

• As expected from the preceding discussion, an enormous effort
has to be made to identify galaxies, measure their redshifts, se-
lecting homogeneous galaxy subsamples as a function of redshift
by luminosity and colour so as not to compare and correlate ap-
ples with oranges, estimating the window function of the survey,
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determining the average galaxy number density, correcting for the
convolution with the window function and for the bias, and so
forth.

Top: Geometry of the 2dFGRS sur-
vey volume. Middle: Galaxy dis-
tribution therein. Bottom: The area
covered by the 2dFGRS on the sky.

• Moreover, calibration experiments have to be carried out in which
all measurement and correction techniques are applied to simu-
lated data in the same way as to the real data to determine reliable
error estimates and to test whether the full sequence of analysis
steps ultimately yields an unbiased result.

• Based on 221, 414 galaxies, the 2dFGRS consortium derived a
power spectrum of superb quality. First and foremost, it confirms
the power-spectrum shape expected for cold dark matter on the
small-scale side of the peak. On its own, this is a highly remark-
able result.

• Next, the 2dFGRS power spectrum clearly shows a turn-over to-
wards larger scales, signalling the peak. The survey is still not
quite large enough to show the peak, but the peak location can
be estimated from the flattening of the power spectrum. Its pro-
portionality to Ωm0 allows an independent determination of the
matter density parameter.

• Finally, and most spectacularly, the power spectrum shows the
baryonic acoustic oscillations, whose amplitude allows an inde-
pendent determination of the ratio between the density parameters
of baryons and dark matter.

• Apart from the fact that the CDM shape of the power spectrum is
confirmed on small scales, the results obtained from the 2dFGRS
can be summarised as follows:

Ωm0 0.233 ± 0.022
Ωb0/Ωm0 0.185 ± 0.046

The Hubble constant of h = 0.72 is assumed here. Indirectly, the
baryon density is constrained to beΩb0 ≈ 0.04, which is in perfect
agreement with the value derived from primordial nucleosynthe-
sis and the measured abundances of the light elements; the SDSS
gives a value of Ωm0 = 0.24 ± 0.02, in agreement with 2dF and
WMAP5.
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Figure 9.1: Left: Power spectrum of the 2dFGRS galaxy distribution
(top) and after division by the smooth ΛCDM expectation (bottom).
Right: Separate power spectra of red and blue galaxies (top) and their
ratio (bottom).



CHAPTER 9. COSMIC STRUCTURES 101

Figure 9.2: The galaxy power spectrum obtained from the SDSS (bot-
tom), and the ratio between the power spectra of red and blue galaxies
(top).
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