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• Where is the rest? Our current idea is that it is in warm/hot inter-
galactic medium. This is di⇧use, ionised filamentary gas that fills
out the spaces between galaxies. In clusters of galaxies, the tem-
peratures and densities are hot enough that it is possible to detect
via its X-ray emission (see next section). In filaments, the gas is
neither hot nor dense enough to emit much in X-rays, and instead
must be constrained by detection of absorption line systems in the
far-UV or X-ray (very highly ionised oxygen or nitrogen).

A schematic diagram of the warm-
hot intergalactic medium; the bulk
of the gas is in filaments which con-
nect galaxies

• A huge breakthrough in recent times has been the detection of
6-times-ionised oxygen and nitrogen from filaments of the IGM
(see attached article by Nicastro 2004) from which > 1/2 of the
baryonic density of the Universe has been inferred. These lines
are *so* faint that one has to wait until a bright flare from a blazar
happens to take the spectra (otherwise one needs to integrate on a
‘normal’ bright X-ray source for �months).

• I want to give an idea of how extreme this extrapolation is. At
typical column densities for detection of ⌦ 1015cm�2, and for
an ⌦AU/pc-sized source, one estimates around 1042 or 1052 ions
were along the line of sight that were detected, corresponding to
⌦ the mass of an asteroid / the mass of Jupiter. From this small
amount of (more-or-less) detected matter, one has extrapolated
more than 1/2 of the baryonic density of the Universe!

6.3 Total mass in galaxies

6.3.1 Galaxies

• the rotation velocities of stars orbiting in spiral galaxies are ob-
served to rise quickly with radius and then to remain roughly con-
stant; if measurements are continued with neutral hydrogen be-
yond the radii out to which stars can be seen, these rotation curves
are observed to continue at an approximately constant level;

After a quick rise, stellar velocities
in spiral galaxies remain approxi-
mately constant with radius. (The
galaxy shown is NGC 3198.)

• in a spherically-symmetric mass distribution, test particles on cir-
cular orbits have orbital velocities of

v2rot(r) =
GM(r)

r
; (6.6)

flat rotation curves thus imply that M(r) ⇣ r; based on the conti-
nuity equation dM = 4⌥r2�dr, this requires that the density falls
o⇧ as �(r) ⇣ r�2 (theory predicts a r�3 fall-o⇧ at large radii); this
is much flatter than the light distribution, which shows that spiral
galaxies are characterised by an increasing amount of dark matter
as the radius increases;
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• a mass distribution with � ⇣ r�2 has formally infinite mass, which
is physically implausible; however, at finite radius, the density of
the galaxy falls below the mean density of the surrounding uni-
verse; the spherical collapse model often invoked in cosmology
shows that a spherical mass distribution can be considered in dy-
namical equilibrium if its mean overdensity is approximately 200
times higher than the mean density �̄;

• let R be the radius enclosing this overdensity, and M the mass
enclosed, then

M
V
=

3M
4⌥R3 = 200�̄ ✏ M

R
=

800⌥�̄R2

3
; (6.7)

at the same time, (6.6) needs to be satisfied, hence

800⌥�̄R2

3
=
v2rot

G
✏ R =

⇤
3v2rot

800⌥G�̄

⌅1/2

; (6.8)

inserting a typical numbers yields

R = 290 kpc
� vrot

200 km s�1

⇥
; (6.9)

with (6.6), this implies

M =
Rv2rot

G
= 2.7 ⇥ 1012 M⇧

� vrot

200 km s�1

⇥3
; (6.10)

The actual normalisation constant is somewhat lower because of
the r�3 fall-o⇧ (roughly 1012) but this gives the flavour of the line
of argument.

Far beyond the stars, flat rotation
curves are inferred from the motion
of neutral-hydrogen clouds (blue;
the galaxy shown is NGC 2915).

• typical luminosities of spiral galaxies are given by the Tully-
Fisher relation,

L = L⇤
� vrot

220 km s�1

⇥3...4
, (6.11)

with L⇤ ↵ 2.4⇥ 1010 L⇧, or the normalising mass is roughly M⇤ ↵
6⇥1010 M⇧; thus, the mass-to-light ratio of a massive spiral galaxy
is found to be m

l
↵ 60 (6.12)

in solar units, or the mass-to-stellar mass ratio is
m
m⇤

↵ 25; (6.13)

evidently, this exceeds the stellar mass-to-light ratio by far, but
the details of the measurement depend on the maximum radius
assumed...

• The same analysis can be run with elliptical galaxies (using other
methods to estimate dynamical masses, using either velocity dis-
persions or weak lensing masses), typical values of m

m⇤
⌦ 45 are

typically found.
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6.3.2 Mass in galaxy clusters: kinematic masses

• the next step upward in the cosmic hierarchy are galaxy clusters,
which were first identified as significant galaxy overdensities in
relatively small areas of the sky;

• rich galaxy clusters contain several hundred galaxies, which by
themselves contain a total amount of stellar mass sim1013 M⇧;

• Yet, the galaxies in rich galaxy clusters move with typical veloci-
ties of order � 103 km s�1 which are measured based on redshifts
in galaxy spectra; therefore, only one component of the galaxy
velocity is observed; its distribution is characterised by the veloc-
ity dispersion  v;

Galaxies move so fast in galaxy
clusters (here the Coma cluster) that
much more than the visible mass is
needed to keep them gravitationally
bound; this was the first argument
for dark matter, as put forward by
Zwicky in the 1930s.

• if these galaxies were not gravitationally bound to the clusters,
the clusters would disperse within � 1 Gyr; since they exist over
cosmological time scales, clusters need to be (at least in some
sense) gravitationally stable;

• assuming virial equilibrium, the potential energy of the cluster
galaxies should be minus two times the kinetic energy, or

GM
R

↵ 3 2
v , (6.14)

where M and R are the total mass and the virial radius of the
cluster, and the factor three arises because the velocity dispersion
represents only one of three velocity components;

Galaxy clusters are the most lumi-
nous emitters of di⇧use X-ray radi-
ation. The figure shows the X-ray
emission of the Coma cluster ob-
served with the Rosat satellite.

• we combine (6.14) with (6.7) to find

R =
⇤

9 2
v

800⌥G�̄

⌅1/2

↵ 2.5 Mpc , (6.15)

and, with (6.14),
M ↵ 2 ⇥ 1015 M⇧ ; (6.16)

hence, the mass required to keep cluster galaxies bound despite
their high velocities exceeds the mass in galaxies by 1-2 orders of
magnitude;

6.3.3 Mass in galaxy clusters: the hot intracluster gas

• galaxy clusters are di⇧use sources of thermal X-ray emission;
their X-ray continuum is caused by thermal bremsstrahlung,
whose bolometric volume emissivity is

jX = Z2g⇧CX n2
�

T (6.17)
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in cgs units, where Z is the ion charge, g⇧ is the Gaunt factor, n is
the ion number density, T is the gas temperature, and

CX = 2.68 ⇥ 10�24 (6.18)

in cgs units, if T is measured in keV;

• a common simple, axisymmetric model for the gas-density distri-
bution in clusters is

n(x) =
n0

(1 + x2)3⇥/2 , x ⌥ r
rc
, (6.19)

where rc is the core radius;

• the line-of-sight projection of the X-ray emissivity yields the X-
ray surface brightness as a function of the projected radius �,

S X(�) =
↵ ✓

�✓
jXdz =

�
⌥�(3⇥ � 1/2)
�(3⇥)

Z2g⇧CX
�

Tn2
0

(1 + �2)3⇥�1/2 , (6.20)

where we have assumed for simplicity that the cluster is isother-
mal, so T does not change with radius;

• the latter equation shows that two parameters of the density pro-
file (6.19), namely the slope ⇥ and the core radius rc, can be read
o⇧ the observable surface-brightness profile;

• the missing normalisation constant can then be obtained from the
X-ray luminosity,

LX = 4⌥r3
c

↵ ✓

0
jXx2dx = 4⌥r3

cZ2g⇧CX
�

Tn2
0

�
⌥�(3⇥ � 3/2)

4�(3⇥)
,

(6.21)
and a spectral determination of the temperature T ;

• finally, the total mass of the X-ray gas enclosed in spheres of
radius R is

MX(R) = 4⌥r3
c

↵ R/rc

0
n(x)x2dx , (6.22)

which is a complicated function for general ⇥; for ⇥ = 2/3, which
is a commonly measured value,

MX(R) = 4⌥r3
cn0

⇤
R
rc
� arctan

R
rc

⌅
, (6.23)

which is of course formally divergent for R � ✓ because the
density falls o⇧ ⇣ r�2 for ⇥ = 2/3 and r � ✓;

• inserting typical numbers, we first set Z = 1 = g⇧ and ⇥ = 2/3
as above, then use �(1/2) =

�
⌥, �(1) = 1 = �(2), and assume a

hypothetic cluster with LX = 1045 erg s�1, a temperature of kT =
10 keV and a core radius of rc = 250 kpc = 7.75 ⇥ 1023 cm;
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• then, (6.21) yields the central ion density

n0 = 5 ⇥ 10�3 cm�3 (6.24)

and thus the central gas mass density

�0 = mpn0 = 8.5 ⇥ 10�27 g cm�3 ; (6.25)

• based on the virial radius (6.15) and on the mass (6.23), we find
the total gas mass

MX = 1.0 ⇥ 1014 M⇧ ; (6.26)

this is of the same order as the cluster mass in galaxies, and
approximately one order of magnitude less than the total cluster
mass;

• it is reasonable to believe that clusters are closed systems in the
sense that there cannot have been much material exchange be-
tween their interior and their surroundings; if this is indeed the
case, and the mixture between dark matter and baryons in clus-
ters is typical for the entire universe, the density parameter in dark
matter should be

⌅dm,0 ↵ ⌅b,0
M

M⇤ + MX
↵ 10⌅b,0 ↵ 0.4 ; (6.27)

more precise estimates based on detailed investigations of indi-
vidual clusters yield

⌅dm,0 ↵ 0.3 ; (6.28)

6.3.4 Alternative cluster mass estimates

• cluster masses can be estimated in several other ways; one of them
is directly related to the X-ray emission discussed above; the hy-
drostatic Euler equation for an isothermal gas sphere in equilib-
rium with the spherically-symmetric gravitational potential of a
mass M(r) requires

1
�

dp
dr
= �GM(r)

r2 , (6.29)

where � and p are the gas density and pressure, respectively; as-
suming an ideal gas, the equation of state is p = nkT , where
n = �/mp is the particle density of the gas and T is its tempera-
ture; if we further simplify the problem assuming an isothermal
gas distribution, we can write

kT
mp�

d�
dr
= �GM(r)

r2 (6.30)
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or, solving for the mass

M(r) = � rkT
Gmp

d ln �
d ln r

; (6.31)

• for the ⇥model introduced in (6.19), the logarithmic density slope
is

d ln �
d ln r

=
d ln n
d ln r

= �3⇥
r2

1 + r2 , (6.32)

thus the cluster mass is determined from the slope of the X-ray
surface brightness and the cluster temperature,

M(r) =
3⇥rkT
Gmp

r2

1 + r2 ; (6.33)

• with the typical numbers used before, i.e. R ↵ 2.5 Mpc, ⇥ ↵ 2/3
and kT = 10 keV, the X-ray mass estimate gives

M(R) ↵ 1.1 ⇥ 1015 M⇧ , (6.34)

in reassuring agreement with the mass estimate (6.16) from
galaxy kinematics;

Strong gravitational lensing in
galaxy clusters can cause strong
distortions of background galaxies
into arcs (shown is the large arc in
the cluster Abell 370). They allow
independent cluster-mass estimates.

• a third, completely independent way of measuring cluster masses
is provided by gravitational lensing; without going into any de-
tail on the theory of light deflection, we mention here that it can
generate image distortions from which the projected lensing mass
distribution can be reconstructed; mass estimates obtained in this
way by and large confirm those from X-ray emission and galaxy
kinematics, although interesting discrepancies exist in detail;

• none of the cluster mass estimates is particularly reliable because
they are all to some degree based on stability and symmetry as-
sumptions; for mass estimates based on galaxy kinematics, for
instance, assumptions have to be made on the shape of the galaxy
orbits, the symmetry of the gravitational potential and the me-
chanical equilibrium between orbiting galaxies and the body of
the cluster; numerous assumptions also enter X-ray based mass
determinations, such as hydrostatic equilibrium, spherical sym-
metry and, in some cases, isothermality of the intracluster gas;
gravitational lensing does not need any equilibrium assumption,
but inferences from strongly distorted images depend very sensi-
tively on the assumed symmetry of the mass distribution;

6.4 Mass density from cluster evolution

• a very interesting constraint on the cosmic mass density is based
on the evolution of cosmic structures; Abell’s cluster catalog cov-
ers the redshift range 0.02 � z � 0.2, which encloses a volume of
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↵ 9 ⇥ 108 Mpc3; of the 2712 clusters in the catalog, 818 fall into
(the poorest) richness class 0; excluding those, there are 1894
clusters with richness class  1 in that volume, which yields an
estimate for the spatial cluster density of

nc ↵ 2 ⇥ 10�6 Mpc�3 ; (6.35)

• it is a central assumption in cosmology that structures formed
from Gaussian random density fluctuations; the spherical collapse
model then says that gravitationally bound objects form where the
linear density contrast exceeds a critical threshold of ⌅c ↵ 1.686,
quite independent of cosmology; the probability for this to hap-
pen in a Gaussian random field with a (suitably chosen) standard
deviation  (z) is

pc(z) =
1
2

erfc
⇤

⌅c�
2 (z)

⌅
, (6.36)

where
 (z) =  0D+(z) (6.37)

because the linear growth of the density contrast is determined by
the growth factor, a fitting formula for which was given in (2.20);

Cluster probability as a function of
 for two di⇧erent values of ⌅m0.• now, the present-day standard deviation  0 must be chosen such

as to reproduce the observed number density of clusters given in
(6.35); the measured probability for finding a cluster is approxi-
mated by

p⌘c =
Mnc

�c⌅m
↵ 3 ⇥ 10�3⌅�1

m0 ; (6.38)

the standard deviation  in (6.36) must now be chosen such that
this number is reproduced, which yields

 0 ↵
⌥⌦⌦ 
⌦⌦�

0.61 ⌅m0 = 1.0
0.72 ⌅m0 = 0.3

; (6.39)

Evolution of the cluster abundance,
depending on the density parameter
⌅m0.

• equations (6.36) and (6.37) can now be used to estimate how the
cluster abundance should change with redshift; simple evaluation
reveals that the cluster abundance is expected to drop very rapidly
with increasing redshift if ⌅m0 is high, and much more slowly if
⌅m0 is low;

• qualitatively, this behaviour is easily understood; if, in a low-
density universe, cluster do not form early, they cannot form at
all because the rapid expansion due to the low matter density pre-
vents them from growing late in the cosmic evolution;
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• from the observed slow evolution of the cluster population as a
whole, it can be concluded that the matter density must be low;
estimates arrive at

⌅m0 ↵ 0.3 , (6.40)

in good agreement with the preceding determinations;

6.5 Musings on the nature of the dark matter

• The preceding discussion should have demonstrated that the mat-
ter density in the Universe is I) considerably less than its critical
value, approximately one third of it. However, II) only a small
fraction of this matter is visible; thus we call the remaining invis-
ible majority dark matter.

• What is this dark matter composed of? Can it be baryons? Tight
limits are set by primordial nucleosynthesis, which predicts that
the matter density in baryonic matter should be ⌅B ↵ 0.04,
cf. (5.27). In the framework of the Friedmann-Lemaı̂tre mod-
els, the baryon density in the Universe can be higher than this
only if baryons are locked up in some way before nucleosynthe-
sis commences. They could form black holes before, but their
mass is limited by the mass enclosed within the horizon at, say,
up to one minute after the Big Bang. According to (2.6), the
scale factor at this time was a ↵ 10�10, and thus the matter den-
sity was of order �m ↵ 1030�cr ↵ 10 g cm�3. The horizon size is
rH ↵ ct ↵ 1.8 ⇥ 1012 cm, thus the mass enclosed by the horizon
is ↵ 3 ⇥ 104M⇧, which limits possible black-hole masses from
above.

• It is expected that quantum e⇧ects cause black holes to radiate,
thus to convert their mass to radiation energy and to “evaporate”.
The estimated time scale for complete evaporation is

⌦bh ↵ 4 ⇥ 1070 s
⇤

M
M⇧

⌅3

, (6.41)

which is shorter than the Hubble time (4.35) if

M � 4 ⇥ 1015 g . (6.42)

Black holes formed very early in the Universe should thus have
disappeared by now.

• Gravitational microlensing was used to constrain the amount of
dark, compact objects in the halo of the Milky Way. Although
they were found to contribute part of the mass, they cannot ac-
count for all of it. In particular, black holes with masses of the
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order 103...4 M⇧ should have been found through their microlens-
ing e⇧ect.

• We are thus guided to the conclusion that the dark matter is most
probably not baryonic and not composed of compact dark objects.
We shall see later that and why the most favoured hypothesis now
holds that it is composed of weakly interacting massive particles.
Neutrinos, however, are ruled out because their total mass has
been measured to be way too low.
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