
Chapter 4

The Hubble Constant

The Hubble constant, ȧ/a ≡ H(a)1, is one of the key parameters de-
scribing the Universe. It is largely a scaling parameter, setting (along
with other parameters to a lesser extent) the age of the Universe, and the
absolute values of luminosities and sizes.

There are a number of ways of measuring Hubble’s constant, which we
will skim in this lecture. The first, and so far most important method,
uses the distance–recession velocity relation to estimate Hubble’s con-
stant. Other methods are then discussed, including gravitational lensing
and distances from cluster Sunayev-Zel’dovich effect measurements.
Then the results are summarised.

4.1 Hubble constant from Hubble’s law

4.1.1 Hubble’s law: history

• Vesto Slipher discovered in the 1920s that distant galaxies typi-
cally move away from us. Edwin Hubble found that their reces-
sion velocity grows with distance,

v = H0 D , (4.1)

and determined the constant of proportionality as H0 ≈
570 km s−1 Mpc−1. This value of the Hubble constant is very
high, primarily because the absolute magnitude of the Cepheid
variable stars had been dramatically overestimated (i.e., the lumi-
nosity was underestimated; they were mixed up with W Virginis
stars, which show similar variability but dramatically fainter lu-
minosities).

A luminosity–effective temperature
relation, with the shaded areas de-
noting the instability strip.

1Only astronomers would call something that is manifestly not constant a constant.
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• we had seen in (2.17) before that all distance measures in a
Friedmann-Lemaı̂tre universe follow the linear relation

D =
cz

H0
(4.2)

to first order in z � 1; since cz = v is the velocity according to
the linearised relation for the Doppler shift,

1 + z =
c + v

c − v ≈ 1 +
v

c
, (4.3)

(4.2) is exactly the relation that Hubble found;
The relation between recession ve-
locity and distance originally pub-
lished by Hubble and Humason in
1931. Note the value of the Hubble
constant!

• there is little doubt that (4.1) is the result that Hubble wanted
to find because he wanted his measurements to support the
Friedmann-Lemaı̂tre cosmology; he even left out data points from
the analysis that did not support his conclusion;

4.1.2 Hubble’s law: the challenge

• There are multiple problems with measuring the Hubble constant.
Firstly, we have no way (yet) of measuring a direct (trigonometric
parallax) measurement to (any) galaxy, making a trigonometric
distance impossible to measure (except for masers; see later).

• Thus, a sequence of distance indicators must be used to estimate
the distances to (typically) star clusters; these star clusters are
used to calibrate other distance indicators which in turn are used
to calibrate other distance indicators which give a value for the
Hubble constant.

• A second problem is that while (4.2) holds for an idealised, homo-
geneous and isotropic universe, real galaxies have peculiar mo-
tions on top of their Hubble velocity which are caused by the at-
traction from local density inhomogeneities; for instance, galax-
ies in our neighbourhood feel the gravitational pull of a cosmo-
logically nearby supercluster called the Great Attractor and ac-
celerate towards it; the galaxy M 31 in Andromeda and the Milky
Way approach each other at ∼ 100 km s−1;

• thus, the peculiar velocities of the galaxies must either be known
well enough, for which a model for the velocity field is necessary,
or they must be observed at so large distances that any peculiar
motion is unimportant compared to their Hubble velocity; requir-
ing that peculiar velocities of order 300 . . . 600 km s−1 be less than
10% of the Hubble velocity, galaxies with redshifts

z � 10 × 300 . . . 600 km s−1

c
≈ 0.01 . . . 0.02 (4.4)

must be observed; this is already so distant that it is hard or im-
possible to apply direct distant estimators;
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• this illustrates why accurate measurements of the Hubble constant
are so difficult: nearby galaxies, whose distances are more accu-
rately measurable, do not follow the Hubble expansion well, but
the distances to galaxies far enough to follow the Hubble law are
very hard to measure;

4.1.3 The distance ladder: the first 20Mpc

• measurements of the Hubble constant from Hubble’s law thus re-
quire accurate distance measurements out to cosmologically rel-
evant distance scales; since this is impossible in one step, the so-
called distance ladder must be applied, in which each step in the
ladder calibrates the next;

• There are a number of key steps in the distance ladder.

• Trigonometric parallaxes: a key direct distance measurement
is the trigonometric parallax caused by the annual motion of the
Earth around the Sun; by definition, a star at a distance of a parsec
perpendicular to the Earth’s orbital plane has a parallax of an arc
second; astrometric measurement accuracies of order 10−3 �� are
thus necessary to measure distances of order 100 pc at 10σ;

• in such a way, the distances to local stars and star clus-
ters (notably the Hyades) have been measured (most
accurately by the European satellite Hipparcos; see
http://www.rssd.esa.int/index.php?project=HIPPARCOS&page=Hyades
for some information on the Hyades from Hipparcos, and
http://www.rssd.esa.int/index.php?project=HIPPARCOS&page=index
for more general information on Hipparcos), allowing measure-
ment of the absolute magnitude of main sequence stars: this in
turn allows the distances to much more distant clusters of stars to
be measured.

• Cluster distances from convergent points: The distance to
nearby clusters can be worked out from their proper motions on
the sky and their radial velocities. Just as parallel train tracks
(or the edges of roads, or meteors) appear to converge towards a
point, so do the paths of stars in a star cluster. The distance to
a cluster can be worked out by using the angle to the convergent
point θ and the radial velocity vr and the proper motion µ:

D(pc) =
vr(km/s) tan θ
4.74µ(”/yr)

. (4.5)

Please see http://www.astro.washington.edu/labs/clearinghouse/labs/Hyades/disthyad.html
for a great discussion of this point at length and an example that
you can worth through.
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• Distances from variable stars: Star clusters allow access to one
of the key distance indicators: Cepheid variable stars. Cepheids
are high-mass stars in late evolutionary stages which undergo
periodic variability (RR Lyraes are also critical distance indica-
tors for old populations); the underlying instability is driven by
the temperature dependence of the atmospheric opacity in these
stars, which is caused by the transition between singly and doubly
ionised Helium;

Some examples for Cepheid
lightcurves

• the cosmologically important aspect of the Cepheids is that their
variability period τ and their luminosity L are related,

L ∝ τ1.3 , (4.6)

hence their luminosity can be inferred from their period, and their
distance from the ratio of their luminosity to the flux S observed
from them,

D =

�
L

S
; (4.7)

at the relevant distances, any distinction between differently de-
fined distance measures is irrelevant;

In some Cepheids, overtones of the
pulsation are excited rather than the
fundamental mode.

• it is of crucial importance here that the calibration of the period-
luminosity relation depends on the metallicity of the Cepheids,
and thus on the stellar population they belong to; Hubble’s orig-
inally much too high result for H0 was corrected when Baade
realised that stars in the Galactic disk belong to another stellar
population than in the halo;

• by measuring the periods of Cepheids and comparing their ap-
parent brightnesses in star clusters of known distance (from typ-
ically main sequence fitting distances, which in turn were cali-
brated using very nearby clusters with trigonometric distances)
and Cepheids in the LMC it was possible to determine the dis-
tance to the Large Magellanic Cloud as DLMC = (50.1 ± 3) kpc;

• measuring the periods of Cepheids in the LMC and comparing
their apparent brightnesses in different galaxies, it is thus possible
to determine the relative distances to the galaxies; for example,
comparisons between Cepheids in the LMC and the Andromeda
galaxy M 31 show

DM 31

DLMC
= 15.28 ± 0.75 , (4.8)

while Cepheids in the member galaxies of the Virgo cluster yield

DVirgo

DLMC
= 316 ± 25 ; (4.9)
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• of course, for the Cepheid method to be applicable, it must be
possible to resolve at least the outer parts of distant galaxies into
individual stars and to reliably identify Cepheids among them;
this was one reason why the Hubble Space Telescope was pro-
posed, to apply the superb resolution of an orbiting telescope to
the measurement of H0; Cepheid distance measurements are pos-
sible to distances � 20 Mpc;

• Masers: There is a critical consistency check with the trigonet-
ric parallax/main sequence fitting/Cepheid distance scale: water
masers orbiting the central regions of distant galaxies. The princi-
ple is simple: if there is perfect circular motion in the maser ring
and the inclination is known and not face on, then the proper mo-
tion of the maser clouds can be combined with the radial velocity
of the clouds at the orbit tangent points to provide a distance:

D(Mpc) =
vr(km/s)

4.74 cos(90 − i)µ(µas/yr)
. (4.10)

In practice, the acceleration of the masers can also be measured
using radio interferometric observations with VLBI. The disk ro-
tation of ∼ 1000 km/s coupled with 30µas/yr gives a distance
of 7.3±0.3Mpc; a direct geometric distance to a galaxy with
Cepheids.

• Eclipsing binary stars: Eclipsing binaries provide an accurate
method of measuring distances to nearby galaxies with an accu-
racy of 5%. A review of the method can be found from Paczynski
(1997). The method requires both photometry and spectroscopy
of an eclipsing binary. From the light and radial velocity curve the
fundamental parameters of the stars can be determined accurately.
The light curve provides the fractional radii of the stars, which are
then combined with the spectroscopy to yield the physical radii
and effective temperatures. The velocity semi-amplitudes deter-
mine both the mass ratio and the sum of the masses, thus the indi-
vidual masses can be solved for. Furthermore, by fitting synthetic
spectra to the observed ones, one can infer the effective tempera-
ture, surface gravity and luminosity. Comparison of the luminos-
ity of the stars and their observed brightness yields the reddening
of the system and distance. Measuring distances with eclipsing
binaries is an essentially geometric method and thus accurate and
independent of any intermediate calibration steps. With the ad-
vent of 8 m class telescopes, eclipsing binaries have been used to
obtain accurate distance estimates to the LMC, SMC, M31 and
M33.

• Light echos: With SN1987A, it was possible to measure the dis-
tance to the LMC using a light echo. The idea is that if one has
a spherical shell or ring which existed before the supernova (ring



CHAPTER 4. THE HUBBLE CONSTANT 30

in this case), then it lights up after a certain time when hit by the
light from SN1987A (the front side), and will remain illuminated
until the echo has faded from the back side. Given an angular di-
ameter at that time from direct measurements, the distance to the
LMC can be measured.

4.1.4 Distance Ladder: extending beyond 20Mpc

• Fundamental plane: scaling relations within classes of galaxies
provide additional distance indicators; in the three-dimensional
parameter space spanned by the velocity dispersion σv, the effec-
tive radius Re and the surface brightness Ie at the effective radius,
elliptical galaxies populate the tight fundamental plane defined
by

Re ∝ σ1.4
v I
−0.85
e ; (4.11)

since the luminosity is evidently

L ∝ IeR
2
e , (4.12)

the fundamental-plane relation implies

L ∝ σ2.8
v I
−0.7
e ; (4.13)

such a relation follows directly from the virial theorem if the
mass-to-light ratio in elliptical galaxies increases gently with
mass,

M

L
∝ M

0.2 ; (4.14)

• thus, if it is possible to measure the effective surface brightness Ie

(which does not depend on distance, if one neglects cosmological
surface brightness dimming and k-corrections) and the velocity
dispersion σv of an elliptical galaxy, the fundamental plane gives
the luminosity, which can be compared to the flux to find the dis-
tance; such distances are accurate to 11% in the best cases (i.e.,
22% intrinsic scatter in luminosity).

• Tully-Fisher relation: a relation similar to (4.13), the Tully-
Fisher relation, holds for spiral galaxies if the velocity dispersion
σv is replaced by the rotational velocity vrot and if surface bright-
ness is neglected; however, spiral galaxies avoid galaxy clusters,
and it is therefore more difficult to decide whether they belong to
a galaxy cluster such as Virgo or Coma;

• The form of the relation is L ∝ vαrot where α is between 2.5 (in blue
bands) and 4 (in the near-infrared). The scatter in the Tully-Fisher
relation can be as little as 0.2 mags or less in carefully-selected
samples in the far red and near-infrared.
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• Surface Brightness Fluctuations: an interesting way for deter-
mining distances to galaxies uses the fluctuations in their surface
brightness; the idea behind this method is that the fluctuations
in the surface brightness will be dominated by the rare bright-
est stars, and that the optical luminosity of the entire galaxy will
be proportional to the number N of such stars; assuming Pois-
son statistics, the fluctuation level will be proportional to

√
N,

from which N and L ∝ N can be determined once the method
has been calibrated with galaxies whose distance is known other-
wise; again, the distance is then found by comparing the flux to
the luminosity;

• Planetary Nebulae: Planetary nebulae, which are late stages in
the evolution of stars, have a luminosity function with a steep up-
per cut-off; moreover, their spectra are dominated by sharp neb-
ular emission lines which facilitate their detection even at large
distances because they appear as bright objects in narrow-band
filters tuned to the emission lines; since the cut-off luminosity is
known, it can be converted to a distance as usual;

• Supernova Type Ia: One of the most important classes of dis-
tance indicators are supernovae of type Ia; they occur in binary
systems in which one of the components is a white dwarf accret-
ing mass from an overflowing companion; since the electron de-
generacy pressure in the cores of white dwarfs can stabilise them
only up to the Chandrasekhar mass of ≈ 1.4 M⊙, the white dwarf
suddenly collapses once mass accretion drives it over this limit;
in the ensuing supernova explosion, part of the white dwarf’s ma-
terial is converted to elements of the iron group; since the amount
of nuclear fuel is fixed by the Chandrasekhar mass, the explosion
energy is also fixed, and thus so is the luminosity;

• this idealised picture needs to be modified because the amount of
energy released depends on the opacity of the material surround-
ing the supernovae explosion; this leads to a scatter in the peak
luminosities, but this scatter can be corrected applying the empir-
ical Philipps relation, which relates the peak luminosity L to the
time scale τ of the light-curve decay,

L ∝ τ1.7 ; (4.15)

when this correction is applied, type-Ia supernova are turned into
precise standard candles with a dispersion of only 6%;

• Because this is one of the brightest standard candles, it has been
applied out to redshifts of 1.5 (with difficulty); it was the first
convincing and is still one of the most important observations in-
dicating the accelerating expansion of the Universe (see later for
a deeper discussion).
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• Type II supernovae: although they are not standard (or standard-
isable) candles, core-collapse supernovae of type II can also be
used as distance indicators through the Baade-Wesselink method;
suppose the spectrum of the supernova photosphere can be ap-
proximated by a Planck curve whose temperature can be deter-
mined from the spectral lines; then, the Stefan-Boltzmann law
says that the total luminosity is

L = aR
2
T

4 , (4.16)

where a is again the Stefan-Boltzmann constant from (??); the
photospheric radius, however, can be inferred from the expansion
velocity of the photosphere, which is measurable by the Doppler
shift in the emission lines, times the time after the explosion;
when applied to the supernova SN 1987A in the Large Magel-
lanic Cloud, the Baade-Wesselink method yields a distance of

DLMC = (44 . . . 50) kpc , (4.17)

which agrees with other distance measurements (Cepheids,
eclipsing binaries, etc).

4.1.5 The HST Key Project

• all these distance indicator were used by the HST Key Project to
determine accurate distances to 26 galaxies between 3 . . . 25 Mpc,
and five very nearby galaxies2 for testing and calibration;

Hubble laws as measured by the
Hubble Key Project in different
wave bands (top to bottom) and in
different stages of correction (left to
right).

Probability distributions for H0 ob-
tained with different measurement
techniques applied in the Hubble

Key Project, and the combined dis-
tribution.

• double-blind photometry was applied to the identified distance in-
dicators; since Cepheids tend to lie in star-forming regions and are
thus attenuated by dust, and since their period-luminosity relation
depends on metallicity, respective corrections had to be carefully
applied;

• then, the measured velocities had to be corrected by the peculiar
velocities, which were estimated by a model for the flow field;

• the estimated luminosities of the distance indicators could then be
compared with the extinction-corrected fluxes to determine dis-
tances, whose proportionality with the velocities corrected by the
peculiar motions finally gave the Hubble constant; a weighted av-
erage over all distance indicators is

H0 = (72 ± 8) km s−1 Mpc−1 , (4.18)

where the error is the square root of the systematic and statistical
errors summed in quadrature;

2see http://www.ipac.caltech.edu/H0kp/H0KeyProj.html
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4.2 Gravitational Lensing

• a totally different method for determining the Hubble constant
uses gravitational lensing; masses bend passing light paths to-
wards themselves and therefore act in a similar way as convex
glass lenses; as in ordinary geometrical optics, this effect can be
described applying Fermat’s principle to a medium with an index
of refraction

n = 1 − 2Φ
c2 , (4.19)

where Φ is the Newtonian gravitational potential;

• if it is strong enough, the curvature of the light paths causes
multiple images to appear from single sources; compared to the
straight light paths in absence of the deflecting mass distribution,
the curved paths are geometrically longer, and they have to addi-
tionally propagate through a medium whose index of refraction is
n > 1; this gives rise to a time delay which has a geometrical and
a gravitational component,

τ =
1
2

�
�θ − �β

�2 − ψ(�θ) , (4.20)

where �θ are angular coordinates on the sky and �β is the angular
position of the source; ψ is the appropriately scaled Newtonian
potential of the deflector, projected along the line-of-sight; ac-
cording to Fermat’s principle, images occur where τ is extremal,
i.e. �∇θτ = 0;

• the projected lensing potential ψ is related to the surface-mass
density Σ of the deflector by

�∇2ψ = 2
Σ

Σcr
≡ 2κ , (4.21)

where the critical surface-mass density

Σcr ≡
c

2

4πG
Ds

DdDds
(4.22)

contains the distances Dd,s,ds from the observer to the deflector,
the source, and from the deflector to the source, respectively;

The quasars MG 0414 (top) and
PG 1115 are quadruply gravita-
tionally lensed by galaxies along
the line-of-sight. Time delays be-
tween different images allow mea-
surements of the Hubble constant if
a plausible mass model for the lens-
ing galaxy exists.

• the dimension-less time delay τ from (4.20) is related to the true
physical time delay t by

t ∝ τ
H0
, (4.23)

where the proportionality constant is a dimension-less combina-
tion of the distances Dd,s,ds with the Hubble radius cH

−1
0 and the

deflector redshift 1 + zd; (4.23) shows that the true time delay is
proportional to the Hubble time, as it can intuitively be expected;
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• time delays are measurable in multiple images of a variable
source; the variable signal arrives after different times in the im-
ages seen by the observer, and if the deflector is a galaxy, time
delays are typically of order days to months and therefore ob-
servable with a reasonable monitoring effort;

• interestingly, it can be shown in an elegant, but lengthy calcula-
tion that measured time delays can be inverted to find the Hubble
constant from the approximate equation

H0 ≈ A(1 − �κ�) + B�κ�(η − 1) , (4.24)

where A and B are constants depending on the measured image
positions and time delays, �κ� is the mean scaled surface-mass
density of the deflector averaged within an annulus bounded by
the image positions, and η ≈ 2 is the logarithmic slope of the
deflector’s density profile;

• therefore, if a model exists for the gravitationally-lensing galaxy,
the Hubble constant can be found from the positions and time
delays of the images; applying this technique to five different lens
systems3, Kochanek (2002) found

H0 = (73 ± 8) km s−1 (4.25)

assuming that the lensing galaxies have radially constant mass-
to-light ratios;

• this result is highly remarkable because it was obtained in one
step without any reference to the extragalactic distance ladder;
although there is the remaining ambiguity from the mass model
for the lensing galaxies, the perfect agreement between the re-
sults from lensing time delays and the HST Key Project is a very
reassuring confirmation of the cosmological standard model;

Values for the Hubble constant
obtained with alternative methods
(gravitational lensing, GL, and the
thermal Sunyaev-Zel’dovich effect,
SZ) not depending on the distance
ladder.

4.3 The Sunyaev-Zel’dovich effect

• another method should finally be mentioned because it is physi-
cally interesting and conceptually elegant, although it will proba-
bly never become competitive; it is based on two different types
of observations of the hot gas in massive galaxy clusters;

• galaxy clusters contain diffuse, fully ionised plasma with temper-
atures of order (1 . . . 10) keV which emits X-rays by the thermal
bremsstrahlung (free-free emission) of the electrons scattering off

3these are: PG 1115 + 80, SBS 1520 + 530, B 1600 + 434, PKS 1830 − 211 and
HE 2149 − 2745
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the ions; as a two-body process, the bremsstrahlung emissivity jX

is proportional to the product of the electron and ion densities ne

and ni, times the square root of the temperature T ,

jX ∝ neni
√

T = CXn
2
e

√
T , (4.26)

where CX is a constant whose value is irrelevant for our current
purposes; moreover, we have used that the ion density will be
proportional to the electron density ne;

• since the emissivity is the energy released per volume per time,
the energy emitted by the galaxy cluster per surface-area element
dA is

dE = dA

�
dl jX , (4.27)

where the integral extends along the line-of-sight; the energy flux
seen by the observer from this surface-area element is

dS =
dE

4πD2
lum

=
dA

�
dl jX

4πD2
lum

, (4.28)

• by definition of the angular-diameter distance, the surface-area
element dA spans the solid angle element dΩ = dA/D2

ang, so the
X-ray flux per unit solid angle, or the X-ray surface brightness, is

I =
dS

dΩ
=

D
2
ang

4πD2
lum

�
dl jX =

1
4π(1 + z)4

�
dl jX , (4.29)

where we have used the remarkable Etherington relation between
the angular-diameter and luminosity distances,

Dlum = (1 + z)2
Dang , (4.30)

which holds in any space-time;

• the hot electrons in the galaxy clusters scatter microwave back-
ground photons passing by to much higher energies by inverse
Compton scattering; this process will neither create nor destroy
photons, but transport the photons to higher energy; thus, if the
CMB is observed towards a galaxy cluster, its intensity at low
photon energies will appear reduced, and increased at high en-
ergies; this is the so-called thermal Sunyaev-Zel’dovich effect:
clusters cast shadows on the CMB at low frequencies, and ap-
pear as sources at high frequencies, where the division line lies at
217 GHz;

• the amplitude of the thermal Sunyaev-Zel’dovich effect is quanti-
fied by the Compton-y parameter,

y =

�
dl

kT

mec
2σTne , (4.31)
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where me is the electron rest-mass and σT is the Thomson scat-
tering cross section; the total Compton-y parameter of a galaxy
cluster, integrated over the entire solid angle of the cluster, is thus

Y =

�
dΩ y =

1
D2

ang

�
dAdl y =

1
D2

ang

�
dV

kT

mec
2σTne , (4.32)

i.e. it is determined by a volume integral over the cluster divided
by the squared angular-diameter distance;

• the comparison between the two observables discussed here, the
X-ray surface brightness (4.29) and the integrated Compton-y pa-
rameter (4.32), shows that they both depend on the distribution
of temperature and electron density within the cluster, and on
the squared angular-diameter distance to the cluster; assuming a
model for radial T and ne profiles then allows combining the two
types of measurement to find the cluster’s angular-diameter dis-
tance, which is proportional to the Hubble length cH

−1
0 and thus

to the inverse Hubble constant;

• in this way, it is possible to estimate the Hubble constant by com-
bining X-ray and thermal Sunyaev-Zel’dovich measurements on
galaxy clusters; typical values for H0 derived in this way are sub-
stantially lower than the values discussed above, which is prob-
ably due to overly simplified assumptions about the temperature
and electron-density distributions in the clusters;

4.4 Summary

• if we accept the result of the Hubble Key Project for now,

H0 = (72 ± 8) km s−1 Mpc−1 , (4.33)

we can calibrate several important numbers that scale with some
power of the Hubble constant;

• first, in cgs units, the Hubble constant can be written

H0 = (2.3 ± 0.3) × 10−18 s , (4.34)

which implies the Hubble time, i.e. the inverse of the Hubble con-
stant

1
H0
= (13.6 ± 1.5) Gyr (4.35)

and the Hubble radius
c

H0
= (1.3 ± 0.1) × 1028 cm = (4.1 ± 0.5) Gpc ; (4.36)
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the critical density of the Universe turns out to be

ρcr =
3H

2
0

8πG
= (9.65 ± 2.1) × 1030 g cm−3 ; (4.37)

• the uncertainty in H0 is conventionally expressed in terms of
the dimension-less parameter h ≡ H0/100 km s−1 Mpc−1; since
lengths in the Universe are typically measured with respect to
the Hubble length, they are often given in units of h

−1Mpc; sim-
ilarly, luminosities are typically obtained by multiplying fluxes
with squared luminosity distances and are thus often given in
units of h

−2
L⊙; we avoid this notation in the following and insert

h = 0.72 where needed;
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