
Chapter 3

The age of the Universe

A key constraint on cosmology is the ‘observed’ age of the Universe.
We have no direct way to measure how long ago the Big Bang hap-
pened, but there are various ways to set lower limits to the age of the
Universe. They are all based on the same principle: since the Universe
cannot be younger than any of its parts, it must be older than the oldest
objects it contains. Three methods for age determination have been de-
veloped. One is based on the radioactive decay of long-lived isotopes,
another constrains the age of globular clusters, and the third is based on
the age of white dwarfs. We shall discuss them in turn to find out how
old the Universe should be at least.

It turns out that these arguments, because of astrophysical complica-
tions, no longer provide the strongest constraints on cosmological pa-
rameters. They are included here for three reasons: (1) historical im-
portance - age of the Universe constraints played an important role his-
torically, (2) it is an important consistency check, and (3) the fact that
the age of the oldest constituents of the Universe that we can observe
is finite (and not that old) is a fundamental argument for the Big Bang
paradigm.

3.1 Nuclear cosmo-chronology

• nuclear cosmo-chronology compares the measured abundance of
certain radioactive isotopes with their initial abundance.

• This method can in principle be a very powerful one. Since ra-
dioactive decay is described Ṅ = ��N, where N is the number
of decaying nuclei in a closed sample and � is the decay rate,
integration gives

N(t) = N0e��t (3.1)

• Since N and � are measurable, the only barrier to measuring t is
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knowing the initial abundance of nuclei N0.

• In some well-posed cases (e.g., measuring the age of the Earth)
the initial abundance can be estimated with some accuracy
through the comparison of the abundances of di↵erent isotopes
of both the decaying nuclei and the decay products.

• In other cases, the initial abundance can only be crudely esti-
mated, and the constraints are considerably less robust (e.g., esti-
mating the age of the Galactic disk).

3.1.1 The age of the Earth

• to give a specific example, consider the two uranium isotopes 235U
and 238U; they both decay into stable lead isotopes, 235U! 207Pb
through the actinium series and 238U! 206Pb through the radium
series; the abundance of any of these two lead isotopes is the sum
of the initial abundance, plus the amount produced by the uranium
decay;

• since the radioactive decay is described Ṅ = ��N, where N is the
number of decaying nuclei in a closed sample and � is the decay
rate, integration gives

N(t) = N0e��t (3.2)

for the remaining number of initially N0 radioactive nuclei, or

N̄ = N0

⇣
1 � e��t

⌘
= N(t)

⇣
e�t � 1

⌘
(3.3)

for the number of nuclei of the stable decay product;

• thus, the present abundance of 207Pb nuclei is its primordial abun-
dance N207,0 plus the amount produced,

N207 = N207,0 + N235

⇣
e�235t � 1

⌘
, (3.4)

where N235 is the abundance of 235U nuclei today; a similar equa-
tion with 235 replaced by 238 and 207 replaced by 206 holds for
the decay of 238U to 206Pb; the decay constants for the two ura-
nium isotopes are measured as

�235 = (1.015 Gyr)�1 , �238 = (6.45 Gyr)�1 ; (3.5)

• the idea is now that ores on Earth or meteorites formed during a
period which was very short compared to the age of the Earth te,
so that their abundances can be assumed to have been locked up
instantaneously and simultaneously a time te ago; chemical frac-
tionation has given di↵erent abundances to di↵erent samples, but
could not distinguish between di↵erent isotopes of the same ele-
ment; thus, we expect di↵erent samples to show di↵erent isotope
abundances, but identical abundance ratios of di↵erent isotopes;
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• the stable lead isotope 204Pb has no long-lived parents and is
therefore a measure for the primordial lead abundance; thus, the
abundance ratios between 207Pb and 208Pb to 204Pb calibrate the
abundances in di↵erent samples;

• suppose we have two independent samples a and b. The key thing
here is that we assume i) that the isotopic ratios in the initial sam-
ples were the same (i.e., the initial 235U to 238U ratios, and the
initial ratios of 204Pb to 206Pb to 207Pb were independent of sam-
ple), and ii) that the two samples had di↵erent initial U to Pb

ratios. Then, the abundance ratios

R206 ⌘
N206

N204
and R207 ⌘

N207

N204
(3.6)

are measured; according to (3.3), they are

R206 = R206,0 +
N238

N204

⇣
e�238te � 1

⌘
,

R207 = R207,0 +
N235

N204

⇣
e�235te � 1

⌘
; (3.7)

the lead abundance ratios R206,0 and R207,0 should be the same in
the two samples and cancel when the di↵erence between the ratios
in the two samples is taken; then, the ratio of di↵erences can be
written as

R
a

207 � R
b

207

R
a

206 � R
b

206

=
N235

N238

e�235te � 1
e�238te � 1

; (3.8)

once the lead abundance ratios have been measured in the two
samples, and the present uranium isotope ratio

N235

N238
= 0.00725 (3.9)

is known, the age of the Earth te is the only unknown in (3.8); this
method yields

te = 4.6 ± 0.1 Gyr ; (3.10)

3.1.2 The age of the Galaxy

• a variant of this method can be used to estimate the age of the
Galaxy, but this requires a model for how the radioactive ele-
ments were formed during the lifetime of the galaxy until they
were locked up in samples where we can measure their abun-
dances today;

• suppose there was an instantaneous burst of star formation and
subsequent supernova explosions a time tg ago and no further pro-
duction thereafter; then, the radioactive elements found on Earth
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today decayed for the time tg � te until they were locked up when
the Solar System formed; if we can infer from supernova theory
what the primordial abundance ratio 235U/238U is, we can con-
clude from its present value (3.9) and the age of the Earth what
the age of the Galaxy must be;

• the situation is slightly more complicated because element pro-
duction did not stop after the initial burst; suppose that a fraction
f of the heavy elements locked up in the Solar System was pro-
duced in a burst at t = 0, and the remaining fraction 1 � f was
added at a steady rate until t = tg � te when the Earth was formed
(i.e., we ignore all elements produced after the formation of the
Earth);

• the di↵erential equation we have to solve now is

Ṅ = ��N + p , (3.11)

where p is the constant production rate; we solve it by variation
of constants, starting from the ansatz

N = C(t)e��t (3.12)

which solves (3.11) if

C =
p

�
e�t + D (3.13)

with a constant D; thus, the abundance of a radioactive element
with decay constant � is

N = De��t +
p

�
(3.14)

before tg � te, and
N = N0e��[t�(tg�te)] (3.15)

thereafter, where N0 is the abundance of elements locked up in
the Solar System, as before;

• now, let Np be the total amount produced, then the initial condi-
tions require that

N(0) = D +
p

�
= f Np , (3.16)

and thus

N(tg � te) = e��(tg�te)


f Np +
p

�

⇣
e�(tg�te) � 1

⌘�
(3.17)

when the Earth formed, and

N(tg) = e��tg


f Np +
p

�

⇣
e�(tg�te) � 1

⌘�
(3.18)

now on the Earth.
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• the production rate must be

p =
(1 � f )Np

tg � te
, (3.19)

which gives the present abundance

N = Npe��tg
"

f +
(1 � f )
�(tg � te)

⇣
e�(tg�te) � 1

⌘#
(3.20)

in terms of the produced abundance Np;

• supernova theory says that the produced abundance ratio of the
isotopes 235U and 238U is

N235,p

N238,p
= 1.4 ± 0.2 ; (3.21)

taking the ratio of (3.20) for the present abundances of 235U and
238U, inserting the decay constants from (3.5), the abundance ra-
tios from (3.9) and (3.21), and the age of the Earth te from (3.10)
yields an equation which contains only the age of the galaxy tg in
terms of the assumed fraction f ; this gives

tg =

8>>>>><
>>>>>:

6.3 ± 0.2 Gyr f = 1(all in burst)
8.0 ± 0.6 Gyr f = 0.5
12 ± 2 Gyr f = 0(constant)

(3.22)

• of course, the Universe must be older than the Galaxy; common
assumptions and results from galaxy-formation theory assert that
there at least 1 Gyr is necessary before galactic disks could have
been assembled; therefore, nuclear cosmochronology constrains
the age of the Universe to fall within

7 Gyr . t0 . 13 Gyr ; (3.23)

3.2 Stellar ages

• another method for measuring the age of the Universe caused
much trouble for cosmologists for a long time; it is based on stel-
lar evolution and exploits the fact that the time spent by stars on
the main sequence of the Hertzsprung-Russell diagram depends
sensitively on their mass and thus on their color;

• Using this, if one can find collections of stars which are relatively
ancient, it o↵ers a chance to put a stringent lower limit on the age
of the Universe. Globular clusters o↵er access to such populations
(ancient and reasonably metal poor). In what follows, we will
explore age-dating globular cluster stellar populations.
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• stars are described by the stellar-structure equations, which relate
the mass M, the density ⇢ and the pressure P to the radius r and
specify the temperature T and the luminosity L; they read

dP

dr
= �GM⇢

r2 ,
dM

dr
= 4⇡r2⇢ , (3.24)

which simply state hydrostatic equilibrium and mass conserva-
tion, and

dT

dr
=

3L⇢

4⇡r2acT 3 ,
dL

dr
= 4⇡r2⇢✏ , (3.25)

which describe energy transport and production;  is the opacity
of the stellar material, ✏ is the energy production rate per mass,
and a is the Stefan-Boltzmann constant;

• The goal is to understand how luminosity and temperature depend
on lifetime and opacity (i.e., age and metallicity).

• What we’ll do to get a flavor for the problem is to do a dimen-
sional analysis (i.e., drop physical constants and equate dP/dr ⇠
P/R, etc.) We will explicitly keep track of the opacity  in what
follows. Using the equation for hydrostatic equilibrium and the
ideal gas law P = ⇢kT

µmH

one finds M / TR/µ, where µ is the mean
molecular mass in units of the hydrogen atom mass.

• Using then the equation for temperature change as a function of
luminosity, density, radius, temperature and opacity, one derives
L / µ4

M
3�1. Thus, given that the lifetime ⌧ ⇠ M/L, ⌧ / M

�2,
⌧ / T

�4, and L / 1/2⌧�3/2. (Please work through this derivation;
it is informative).

• Using then the Stefan-Boltzmann equation L / R
2
T

4, one can use
the above to determine T / (⌧)�1/4.

• There are a few key results here. L / M
3 and L / T

4 describe
(in a very approximate fashion) the stellar main sequence. Fur-
thermore, lifetime is a very strong function of L and T ; hot, lu-
minous high-mass stars have short lifetimes whereas lower mass
stars have very long lifetimes (in the case of stars considerably
less massive than the Sun, the lifetime exceeds the Hubble time)1.

• The key point for the purpose of age-dating the globular cluster
population is that as a coeval stellar population ages, the point in
its Hertzsprung-Russell diagram up to which the main sequence
remains populated moves towards lower luminosities and temper-
atures as (L,T ) ' (1/2⌧�3/2, [⌧]�1/4);

1In a crude sense, this is used by astronomers to age-date light from integrated
stellar populations: blue light is from young populations whereas red light is from
older populations.
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• Thus, the main sequence turn-o↵ points of the populations in
globular clusters can be used to derive lower limits to the age
of the Galaxy and the Universe;

Colour-magnitude diagram of a
globular cluster. The turn-o↵ point
in the main sequence is clearly visi-
ble, but not very well defined.

• in practice, such age determinations proceed by adapting sim-
ulated stellar-evolution tracks to the Hertzsprung-Russell dia-
grams of globular clusters and assigning the age of the best-fitting
stellar-evolution model to the cluster;

• The key uncertainty in this game is distance. Since observations
cannot tell the luminosity of the turn-o↵ point on the main se-
quence, but only its apparent brightness, age determinations from
globular clusters require that the cluster distances be known; there
are several ways for estimating cluster distances; one uses the
period-luminosity relation of certain classes of variable stars; an-
other method uses that the horizontal branch has a typical lumi-
nosity and can thus be used to calibrate the cluster distance;

• therefore, uncertainties in the distance determinations directly
translate to uncertainties in age the determinations; if the distance
is overestimated, so is the luminosity, which implies that the age
is underestimated, and vice versa;

• Another major uncertainty is reddening: this causes the observed
Hertzsprung-Russell diagram to shift along a well-known vec-
tor towards lower luminosities and lower temperatures (“redder”
colours); it can be corrected for to a certain extent using other
information (typically foreground thermal IR emission or Hi col-
umn density, assuming a dust-to-IR or dust-to-gas ratio), and us-
ing other well-defined features of the diagram like the red giant
or horizontal branches as a consistency check;

• several other di�culties are typically met: the simulated stellar-
evolution tracks depend on the assumed metallicity of the stellar
material, which changes the opacity and thus the energy transport
through the stars (the dependence on opacity can be seen above);
the light from the clusters is reddened and attenuated by interstel-
lar absorption; the stellar population tracks are uncertain (because
of opacity uncertainties, convection uncertainties, etc); and other
di�culties...

• globular clusters typically gave age determinations which were
well above estimates based on the cosmological parameters as-
sumed; in the past decade or so, this has changed because im-
provements in stellar-evolution theory have lowered the globular-
cluster ages, while recently determined cosmological parameters
now yield a higher age for the Universe as assumed before; now,
globular-cluster ages imply

t & 12 Gyr (3.26)
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for the age of the Universe;

3.3 Cooling of white dwarfs

• a key method for cosmic age determinations is based on the cool-
ing of white dwarfs. White dwarfs o↵er a number of advantages:
no energy generation (except for some latent heat lost as the white
dwarf rearranges its internal structure during some phases of cool-
ing); the gas is degenerate making the interior approximately
isothermal (because electrons have essentially infinite mean free
path) and with a simple equation of state.

From Hansen et al. 2004• White dwarfs have L / 1/t approximately, with some mass de-
pendence.

• What are white dwarf masses? – if there is mass dependence,
we need to know the masses! Hydrostatic equilibrium gives P /
M

2/r4, and the equation of state of a non-relativitsic degenerate
gas is P / ⇢5/3 / M

5/3/r5, giving then r / M
�1/3 (i.e., as mass

increases, radius decreases).

• The surface gravity g / M/r2 / M
5/3, i.e., surface gravity mea-

surements (from the gravitational redshift of spectral lines) gives
then mass estimates. Result: remarkably, white dwarfs almost
all have masses between 0.55 M� and 0.6 M� (that’s just the way
mass loss during stellar evolution works).

• Thus, given M, we can use the T and L of white dwarf cooling
sequences to get an age. The key uncertainties are distance and
reddening (for the same reasons given above for main sequence-
derived ages), along with uncertainties in white dwarf mass and
composition (through heat capacities).

• Results so far
tglobularclusters ⇠ 12 Gyr (3.27)

for the age of Galactic globular clusters (with a limit of 10Gyr),
and ages of > 7 Gyr for the galactic disk. See Hansen et al.
2004, ApJS, 155, 551 for a beautiful discussion of the method
and sources of uncertainty.

3.4 Summary

• combining results, we see that the age of the Universe, as mea-
sured by its supposedly oldest parts, is at least & 11 Gyr, and this
places serious cosmological constraints; in the framework of the



CHAPTER 3. THE AGE OF THE UNIVERSE 24

Friedmann-Lemaı̂tre models, this can be interpreted as limits on
the cosmological parameters;

• suppose we live in an Einstein-de Sitter universe with ⌦m,0 = 1
and ⌦⇤ = 0; then, we know from (2.12) that

t0 =
2

3H0
& 11 Gyr ) H0 . 2 ⇥ 10�18 s , (3.28)

which reads
H0 . 61 km s�1 Mpc�1 (3.29)

in conventional units;
Constraints on the cosmic age
have meaningful implications
on the cosmological parame-
ters, in particular on the cosmic
density parameter. The three
curves for each cosmological
model are obtained assuming
H0 = (64, 72, 80) km s�1 Mpc�1.

• as we shall see in the next chapter, the Hubble constant is mea-
sured to be larger than this, which can immediately be interpreted
as an indication that we are not living in an Einstein-de Sitter uni-
verse;
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