Chapter 2

The cosmological standard
model

2.1

Introduction

e One of the landmark achievements of the last decade of astro-

2.2

nomical study is the establishment of a ‘cosmological standard
model’. By this term, we mean a consistent theoretical back-
ground which is at the same time simple and broad enough to
offer coherent explanations for the vast majority of cosmoogical
phenomena.

This lecture will explain and discuss the empirical evidence to
which this cosmological standard model owes its convincing
power. The construction of homogeneous and isotropic cosmolo-
gies from general relativity, and the study of their physical prop-
erties and evolution, is treated elsewhere (see, e.g. the separate
lecture scripts on general relativity and on cosmology).

We will start with a brief overview of a few relevant observational
facts about the Universe which played a critical role in motivating
our current cosmological picture, continue with a short timeline
of how it is currently imagined that the Universe evolved, and we
will review a few key aspects of the cosmological model. The
bulk of the course will discuss in depth a number of observa-
tions/methods, and how they fit in to our current cosmological
picture.

Observational overview; the basics

Galaxies exist - the Universe is filled with hundreds of billions
of galaxies, with a wide range in properties. In their inner parts,
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their mass is dominated by cold gas (mostly neutral or molecular
hydrogen) and stars (really dense hydrogen!).

Exapanding Universe - Slipher and Hubble demonstrated con-
vincingly in the 20s and 30s that the Universe is expanding, and
that the redshift is proportional to distance (at least locally). The
truly astounding result, initially determined in the 1990s using
Supernova Ia, is that the expansion of the Universe is accelerating
at the present time. Naively, this is counterintuitive, inasmuch as
the matter content of the Universe should be decelerating its own
expansion.

Dark Matter - both inside galaxies and in galaxy clusters, mo-
tions of gas and stars imply gravitational masses dramatically in
excess of any mass plausibly associated with stars and gas, i.e.,
v > VG M,ispe/R. This discrepancy was first noted in the 1940s
by Fritz Zwicky, and became really obvious in the 1970s in the
study of spiral galaxy rotation curves.

Cosmic Microwave Background - There is a cosmic microwave
background with 7 ~ 2.73K. Its main defining feature is its as-
tonishing level of homogeneity — it is flat to 1 part in 10°.

Helium - There is way too much Helium in the Universe to have
been made in just stars (or, put differently, the ratio between He-
lium and the other, heavier elements is just too high to be ex-
plained by being made in stars alone).

There are a large number of other important observations, but these are
the key aspects which are useful to bear in mind when trying to parse

the elements of our current cosmological picture.

2.3 A brief history of time

Our cosmological picture unifies ‘known physics’ with a few novel in-

gredients motivated entirely by astronomical observation.

e Inflation - it is currently postulated that the Universe had very

early in its evolution a phase of exponential expansion (roughly
60 e-foldings) which took microscopically small parts of the Uni-
verse and boosted them in scale to giant, macroscopic scales (~
galaxy scales and larger). This has two main advantages. It solves
the flatness problem (the Universe would recollapse or expand
very rapidly in the case of Qi > 1 or Qipiial < 1. Qiniial NEeds
to be within 1 part in 10’ of unity to ensure that Q ~ 1 today (as
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|Qora1 — 1] o< £, and given that the age of the Universe is ~ 10! s to-
day and evaluating the Q;;i. at the Planck time fpanc ~ 107%5s).
There is the advantage also that it solves the horizon problem, and
blows up tiny quantum fluctuations in the initial density field into
density perturbations that later seed structure formation. Inflation
is completely motivated by cosmology, although physics theorists
are happy about it.

Radiation Dominated Era - At this time 7 o« 1/a; i.e., as the
Universe expands it cools also. Protons and neutrons freeze out
of the mix as T < 1GeV. The ratio of p to n is determined by
their mass difference coupled with the decay half life of neutrons,
ending up in a n/p number ratio of 1/7. When temperatures are
low enough 77 ~ 1 MeV nucleosynthesis can proceed, forming
*H,’H,*He, Li, etc.

Recombination - At 7 ~ 3000K, the hydrogen can no longer stay
ionised, so it recombines. There are no more electrons to Thomp-
son scatter off of, so the Universe suddenly becomes transparent
and photons can freely propagate. The CMB is a relic of this tran-
sition, and offers a direct view of the structure of the Universe at
this time.

Matter Dominated Era - structure formation, galaxy formation,
expansion of the Universe. A ‘boring’ time for cosmologists (who
want to measure the formation of structure and the expansion his-
tory to measure cosmological parameters), and the most exciting
time for astrophysicists (galaxy formation, star formation, planet
formation, life, etc - minor details!) The main astrophysically-
motivated ingredients here are dark matter and dark energy / cos-
mological constant.

2.4 Friedmann models

2.4.1 The metric

e Cosmology deals with the physical properties of the Universe as

a whole. The only of the four known interactions which can play
a role on cosmic length scales is gravity. Electromagnetism, the
only other interaction with infinite range, has sources of oppo-
site charge which tend to shield each other on comparatively very
small scales. Cosmic magnetic fields can perhaps reach coher-
ence lengths on the order of > 10 Mpc, but their strengths are
far too low for them to be important for the cosmic evolution.
The weak and the strong interaction, of course, have microscopic
range and must thus be unimportant for cosmology as a whole.
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The best current theory of gravity is Einstein’s theory of gen-
eral relativity, which relates the geometry of a four-dimensional
space-time manifold to its material and energy content. Cosmo-
logical models must thus be constructed as solutions of Einstein’s
field equations.

Symmetry assumptions greatly simplify this process. Guided by
observations to be specified later, we assume that the Universe ap-
pears approximately identically in all directions of observation,
in other words, it is assumed to be isotropic on average. While
this assumption is obviously incorrect in our cosmological neigh-
bourhood, it holds with increasing precision if observations are
averaged on increasingly large scales.

Strictly speaking, the assumption of isotropy can only be valid
in a prefered reference frame which is at rest with respect to the
mean cosmic motion. The motion of the Earth within this rest
frame must be subtracted before any observation can be expected
to appear isotropic.

The second assumption holds that the Universe should appear
equally isotropic about any of its points. Then, it is homoge-
neous. Searching for isotropic and homogeneous solutions for
Einstein’s field equations leads uniquely to line element of the
Robertson-Walker metric,

dr?
1 —kr?

ds? = —c2de + az(t)[ + 1 (d6? + sin’ Hdgbz)] , (2.0

in which r i1s a radial coordinate, k is a parameter quantifying
the curvature, and the scale factor a(t) isotropically stretches
or shrinks the three-dimensional spatial sections of the four-
dimensional space-time; the scale factor is commonly normalised
such that @y, = 1 at the present time;

as usual, the line element ds gives the proper time measured by an
observer who moves by (dr, rd6, r sin 6d¢) within the coordinate
time interval dr; for light, in particular, ds = 0O;

coordinates can always be scaled such that the curvature parame-
ter k is either zero or +1;

by a suitable transformation of the radial coordinate r, we can
rewrite the metric in the form

ds* = —2d + () |dw’ + £ (w) (467 + sin® 0d¢?)| . (2.2)
where the radial function f;(w) is given by
sin(w) (k=1)

fillw) = qw k=0) ; (2.3)
sinh(w) (k=-1)
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sometimes one or the other form of the metric is more convenient;

2.4.2 Redshift and expansion

o the changing scale of the Universe gives rise to the cosmological
redshift z; the wavelength of light from a distant source seen by an
observer changes by the same amount as the Universe changes its
scale while the light is travelling; thus, if A, and A, are the emitted
and observed wavelengths, respectively, they are given by

A a 1
Lo - (2.4)
A, a a
where a is the scale factor at the time of emission and g is nor-
malised to unity; the relative wavelength change is the redshift,

A,— A1 1
=2 =1, 2.5
. A, a (2:5)
and thus { {
z a “ 1+z (2.6)

e when inserted into Einstein’s field equations, two ordinary differ-
ential equations for the scale factor a(f) result; when combined,
they can be brought into the form

Qno Q. 1 - Q- Q- Q
H(a)* = H} —a3’0 + a40 +Qp + 0 " 0 -
= HE%a); (2.7

this is Friedmann’s equation, in which the relative expansion rate
a/a = H(a) is replaced by the Hubble function whose present
value is the Hubble constant, and the matter-energy content is
described by the three density parameters €, o, Qo and Qp ;

o the dimension-less parameters Q,, o and €. o describe the densities
of matter and radiation in units of the critical density
2
3H;

0 = —— 2.
Perd = 870G 2.8)

matter and radiation are distinguished by their pressure; for mat-
ter, the pressure p is neglected because it is very small com-
pared to the energy density pc?, while radiation is characterised

by p = pc/3;

e a Robertson-Walker metric whose scale factor satisfies Fried-
mann’s equation is called a Friedmann-Lemaitre-Robertson-
Walker metric; the cosmological standard model asserts that the
Universe at large is described by such a metric, and is thus char-
acterised by the four parameters Q, o, £, Q2 and Hy;
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e since the critical density evolves in time, so do the density param-
eters; their evolution is given by

Qm 0
Qn(a) = ’ 2.9
@ = (=) + Ono@ —a) 9
for the matter-density parameter and
@) 3
Qu(a) = A0d (2.10)

a+ Qm’o(l — LZ) + .Q.A,()(d3 — a)

for the cosmological constant; in particular, these two equations
show that Q;,(a) — 1 and Qx(a) — 0 for a — 0, independent of
their present values, and that Q,(a)+Qx(a) = 11f Q0+ Qp0 =1
today;

e this lecture is devoted to answering two essential questions: (1)
What are the values of the parameters defining characterising
Friedmann’s equation? (2) How can we understand the deviations
of the real universe from a purely homogeneous and isotropic
space-time?

2.4.3 Age and distances

e since Friedmann’s equation gives the relative expansion rate a/a,
we can use it to infer the age of the Universe,

da ' da
t_fd’_f faH(a) HofaEm)’ 11)

which illustrates that the age scale is the inverse Hubble constant
H;'; a simple example is given by the Einstein-de Sitter model,
which (unrealistically, as we shall see later) assumes Q0 = 1,
Q.o =0and Q, = 0; then, E(a) = a/* and

1 (! 2
L da= — - 2.12
Hofox/aa 3H, (2.12)

e distances can be defined in many ways which typically lead to dif-
ferent expressions; we summarise the most common definitions
here; the proper distance Dy, is the distance measured by the
light-travel time, thus

c da
derop = cdrt = mep = FO faE—(a) , (213)

where the integral has to be evaluated between the scale factors
of emission and observation of the light signal;
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o the comoving distance D, s simply defined as the distance mea-
sured along a radial light ray ignoring changes in the scale factor,
thus dD.,, = dw; since light rays propagate with zero proper
time, ds = 0, which gives

d d d
Doy = dw = <& = Cf—a— cf a (2.14)

a Hy) aa Hy) @E@)’

o the angular-diameter distance D, is defined such that the same
relation as in Euclidean space holds between the physical size of
an object and its angular size; it turns out to be

Dang(a) = le[([ll)(a)] = afK[Dcom(a)] s (215)
where fx(w) is given by (2.3);

o the luminosity distance Dy, is analogously defined to reproduce
the Euclidean relation between the luminosity of an object and its
observed flux; this gives

Dang(a) — fK[w(a)] — fK[Dcom(a)]

Diym (Cl) = ) a a

, (2.16)

o these distance measures can vastly differ at scale factors a < 1;
for small distances, i.e. for a ~ 1, they all reproduce the linear
relation

D(z) = — . 2.17)
H,

e since time is finite in a universe with Big Bang, any particle can
only be influenced by, and can only influence, events within a
finite region; such regions are called horizons; several different
definitions of horizons exist; they are typically characterised by
some speed, e.g. the light speed, times the inverse Hubble func-
tion which sets the time scale;

2.4.4 The radiation-dominated phase

e it is an empirical fact that the Universe is expanding; earlier in
time, therefore, the scale factor must have been smaller than to-
day, a < 1; in principle, it is possible for Friedmann models that
they had a finite minimum size at a finite time in the past and thus
never reached a vanishing radius, a = 0; however, it turns out
that a few crucial observational results rule out such “bouncing”
models; this implies that a Unniverse like ours which is expand-
ing today must have started from a = 0 a finite time ago, in other
words, there must have been a Big Bang;
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e equation (2.7) shows that the radiation density increases like a™*
as the scale factor decreases, while the matter density increases
with one power of a less; even though the radiation density is very
much smaller today than the matter density, this means that there
has been a period in the early evolution of the Universe in which
radiation dominated the energy density; this radiation-dominated
era is very important for several observational aspects of the cos-
mological standard model;

e since the radiation retains the Planckian spectrum which it ac-
quired in the very early Universe in the intense interactions with
charged particles, its energy density is fully characterised by its
temperature T'; since the energy density is both proportional to T*

and a™*, its temperature falls like T oc a™!;

2.5 Structures

2.5.1 Structure growth

o the hierarchy of cosmic structures is assumed to have grown from
primordial seed fluctuations in the process of gravitational col-
lapse: overdense regions attract material and grow; they are de-
scribed by the density contrast 6, which is the density fluctuation
relative to the mean density p,

0= —— (2.18)

e linear perturbation theory shows that the density contrast ¢ is de-
scribed by the second-order differential equation

o +2H6 — 4nGps = 0 (2.19)

if the dark matter is cold, i.e. if its constituens move with negli-
gible velocities; notice that this is an oscillator equation with an
imaginary frequency and a characteristic time scale (4nGp)~'/2,
and a damping term 2H6 which shows that the cosmic expansion
slows down the gravitational instability;

e cquation (2.19) has two solutions, a growing and a decaying
mode; while the latter is irrelevant for structure growth, the grow-
ing mode is described by the growth factor D, (a), defined such
that the density contrast at the scale factor a is related to an initial
density contrast 6; by 6(a) = D.(a)d;; in most cases of practical
relevance, the growth factor is accurately described by the fitting
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