
Chapter 8

Inflation and Dark Energy

8.1 Cosmological inflation

8.1.1 Motivation

• In the preceding chapters, we have seen the remarkable suc-
cess of the cosmological standard model, which is built upon the
two symmetry assumptions underlying the class of Friedmann-
Lemaı̂tre-Robertson-Walker models which experienced a Big
Bang a finite time ago. We shall now discuss a fundamental prob-
lem of these models, and a possible way out.

• Historically, the problem was raised in a different way, but it be-
comes obvious with the very straightforward realisation that it is
by no means obvious why the CMB should appear as isotropic as
it is, and why there should be large coherent structures in it.

• Let us begin with the so-called comoving particle horizon, which
is the distance that light can travel between the Big Bang and time
t. Since light travels on null geodesics, ds = 0, a radial light ray
propagates according to cdt = adw [cf. (2.2)]. Therefore,

w(t) =
�

t

0
dw = c

�
t

0

dt
�

a
= c

�
t

0

da

aȧ
. (8.1)

• Between the Big Bang and the recombination time trec, the inte-
grand in (8.1) can be approximated by the expansion rate for a
matter-dominated universe, or

ȧ
2

a2 = H
2
0Ωm0a

−3 (8.2)

according to (2.7). Thus,

aȧ = H0
�
Ωm0a , (8.3)
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the comoving particle horizon becomes

w(trec) =
c

H0
√
Ωm0

�
arec

0

da√
a
=

2c
√

arec

H0
√
Ωm0

, (8.4)

and the physical particle horizon at the time of recombination is
rrec = arecwrec.

• On the other hand, we have seen in (7.29) that the angular-
diameter distance to the CMB is

Dang(arec) ≈
2carec

H0
√
Ωm0

, (8.5)

which implies that the angular size of the particle horizon is

θrec =
rrec

Dang(arec)
≈ √arec ≈ 2◦ . (8.6)

Illustration of the causality prob-
lem: The particle horizon at CMB
decoupling corresponds to a circle
of ∼ 2◦ radius.

• The physical meaning of the particle horizon is that no event be-
tween the Big Bang and recombination can exert any influence
on a given particle if it is more than the horizon length away.
Our simple calculation thus shows that we cannot understand how
causal processes could establish identical physical conditions in
patches of the sky with radius a few degrees. Points on the CMB
separated by larger angles were never causally connected before
the CMB was released. It is therefore not at trivial that the CMB
could have attained almost the same temperature across the entire
sky! The simple fact that the CMB is almost entirely isotropic
across the sky thus poses a problem which the standard cosmo-
logical model is apparently unable to solve. Moreover, the forma-
tion of coherent structures larger than the particle horizon remains
mysterious. This is one way to state the horizon problem.

• It is sometimes called the causality problem: How can coherent
structures in the CMB be larger than the particle horizon was at
recombination?

• Another uncomfortable problem of the standard cosmological
model is the flatness, or at least the near-flatness, of spatial hy-
persurfaces of our Universe. To see this, we write Friedmann’s
equation in the form

H
2(a) =

8πG
3
ρ +
Λ

3
− Kc

2

a2

= H
2(a)
�
Ωtotal(a) − Kc

2

a2H2

�
, (8.7)

from which we conclude

|Ωtotal(a) − 1| = Kc
2

a2H2 . (8.8)
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• According to (8.3), we have, in the matter-dominated era,

dt =

√
ada

H0
√
Ωm0

⇒ a ∝ t
2/3 , (8.9)

hence
a

2
H

2 = ȧ
2 ∝ t

−2/3 (8.10)

or, from (8.8),
|Ωtotal(a) − 1| ∝ t

2/3 . (8.11)

The universe can be driven into flat-
ness (top) if the comoving Hub-
ble radius can shrink for sufficiently
long time (middle). This can also
solve the causality problem (bot-
tom).

• This shows that any deviation of the total density parameter Ωtotal

from unity tends to grow with time. Thus, (spatial) flatness is an
unstable property. If it is not very precisely flat in the beginning,
the Universe will develop away from flatness. Since we know that
spatial hypersurfaces are now almost flat, |Ωtotal(a)−1| � 1%, say,
the deviation from flatness must have been at most

|Ωtotal(arec) − 1| � 1%
�

4 × 105

1.4 × 1010

�2/3
≈ 10−5 , (8.12)

or ten parts per million at the time of recombination. Clearly, this
requires enormous fine-tuning. This is called the flatness prob-

lem: How can we understand flatness in the late universe without
assuming an extreme degree of fine-tuning at early times?

8.1.2 The idea of inflation

• Since the c/H is the Hubble radius, the quantity rH ≡ c/(aH)
is the comoving Hubble radius. During the matter-dominated era,
H ∝ a

−3/2 and thus rH ∝
√

a, while H ∝ a
−2 and rH ∝ a during the

radiation-dominated era. Therefore, the comoving Hubble radius
typically grows with time. Since we can write (8.8) as

|Ωtotal(a) − 1| = Kr
2
H , (8.13)

this is equivalent to the flatness problem.

• This motivates the idea that at least the flatness problem would
be solved if the comoving Hubble radius could, at least for some
sufficiently long period, shrink with time. If that could be ar-
ranged, any deviation of Ωtotal(a) from unity would be driven to-
wards zero.

• Conveniently, such an arrangement would also remove or at least
alleviate the causality problem. Since the Hubble length charac-
terises the radius of the observable universe, it could be driven
inside the horizon and thus move the entire observable universe
into a causally-connected region. When the hypothesised epoch
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of a shrinking comoving Hubble radius is over, it starts expanding
again, but if the reduction was sufficiently large, it could remain
within the causally-connected region at least until the present.

• How could such a shrinking comoving Hubble radius be ar-
ranged? Obviously, we require

d
dt

c

aH
= − c

(aH)2 (ȧH + aḢ) = − c

(aH)2

�
ȧ

2

a
+ ä − ȧ

2

a

�
< 0 ,

(8.14)
which is possible if and only if ä > 0, in other words, if the
expansion of the Universe accelerates.

• This appears counter-intuitive because the cosmic expansion is
dominated by gravity, which should be attractive and thus neces-
sarily decelerate the expansion. The first law of thermodynamics
implies the matter condition

ρc2 + 3p < 0 ⇒ p < −ρc
2

3
. (8.15)

In other words, cosmic acceleration is possible if the dominant
ingredient of the cosmic fluid has sufficiently negative pressure.

• When applied to a cosmic sub-volume V = a
3, the first law of

thermodynamics

dE + pdV = 0 ⇒ d(ρc2
a

3) + pda
3 = 0 (8.16)

because any heat current would violate isotropy. We thus obtain
the equation

(ρ̇a3 + 3ρa2
ȧ)c2 + 3pa

2
ȧ = 0 , (8.17)

which implies the density evolution

ρ̇ = −3
ȧ

a

�
ρ +

p

c2

�
. (8.18)

• The cosmological constant must have ρ̇ = 0 and therefore p =

−ρ/c2. It has a suitable equation-of-state for cosmic acceleration.
(We will see later that Type Ia supernovae, and other observations,
motivate a cosmological constant and thus cosmic acceleration).

• If we bring Friedmann’s equation (2.7) into the form

a
2
H

2 = H
2
0

�
Ωm0a

−2 +Ωm0a
−1 −ΩK +ΩΛ0a

2
�
, (8.19)

it is obvious that a cosmological constant dominates quickly once
it becomes comparable to the other density components, because
it has the highest power of the scale factor a attached. Once it
dominates, (8.19) becomes

ȧ = H0
�
ΩΛ0a ⇒ a ∝ exp

�
H0
�
ΩΛ0t

�
, (8.20)

and the universe enters into exponential expansion.
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8.1.3 Slow roll, structure formation, and observational
constraints

• We have seen that we need inflation to solve the flatness and
causality problems, and inflation needs a form of matter with neg-

ative pressure. What could that be? Fortunately, conditions like
that are not hard to arrange for particle physics.

• Consider a scalar field φ with a self-interaction potential V(φ).
Then, field theory shows that pressure and density of the scalar
field are related by the equation of state

pφ = wρφc
2 with w ≡

1
2 φ̇

2 − V

1
2 φ̇

2 + V
. (8.21)

Evidently, negative pressure is possible if the kinetic energy of the
scalar field is sufficiently smaller than its potential energy. For the
cosmological-constant case, φ̇ = 0, we have w = −1 or p = −ρc2,
in agreement with the conclusion from (8.18).

• In other words, a suitably strongly self-interacting scalar field has
exactly the properties we need. Inflation, i.e. accelerated expan-
sion, broadly requires φ̇2 to be sufficiently smaller than V .

• Moreover, we need inflation to operate long enough to drive the
total matter density parameter sufficiently close to unity for it to
remain there to the present day. These two conditions are conven-
tionally cast into the form

� ≡ 1
24πG

�
V
�

V

�
� 1 and η ≡ 1

8πG
V
��

V
� 1 . (8.22)

They are called the slow-roll conditions. The first assures that
inflation can set in, because if it is satisfied, the potential has a
small gradient and cannot drive rapid rapid changes in the scalar
field. The second restricts the curvature of the potential and thus
assures that the inflationary condition is satisfied long enough.

The slow-roll conditions mean that
the potential must be sufficiently flat
for inflation to set in, and gently
curved for it to last long enough.

• Estimates show that inflation needs to expand the Universe by
∼ 50 . . . 60 e-foldings (i.e. by a factor of e50...60) for solving the
causality and flatness problems.

• Inflation ends once the slow-roll conditions are violated. By then,
the Universe will have become extremely cold. While the den-
sity of the inflaton field will be approximately the same as at the
onset of inflation (as for the cosmological constant, this is a con-
sequence of the negative pressure), all other matter and radiation
fields will have their energy densities lowered by factors of a

−3...4.
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• Once � approaches unity, the kinetic term φ̇2 will dominate the
potential, and the scalar field will start oscillating rapidly. It is as-
sumed that the scalar field then decays into ordinary matter which
fills or reheats the Universe after inflation is over.

• It is an extremely interesting aspect of inflation that it also pro-
vides a mechanism for seeding structure formation. As any other
quantum field, the inflaton field φ must have undergone vacumm
oscillations because the zero-point energy of a quantum harmonic
oscillator cannot vanish due to Heisenberg’s uncertainty princi-
ple.

Inflation may expand quantum fluc-
tuations to cosmological scales. It
is possible that the large-scale struc-
ture in the universe originated from
inevitable quantum fluctuations in
the very early universe.

• These vacuum oscillations cause the spontaneous creation and
annihilation of particle-antiparticle pairs. Once inflation sets in,
vacuum fluctuation modes are quickly driven out of the horizon
and loose causal connection. Then, they cannot decay any more
and “freeze in”. Thus, inflation introduces the breath-taking no-
tion that density fluctuations in our Universe today may have been
seeded by vacuum fluctuations of the inflaton field before infla-
tion set in and enlarged them to cosmological scales.

• This idea has precisely quantifiable consequences. First, by the
central limit theorem, it demands that linear density fluctuations
in the Universe should be a Gaussian random field. This is be-
cause they arise from incoherent superposition of extremely many
independent fluctuation modes whose amplitude and wave num-
ber are all drawn from the same probability distribution. Under
these circumstances, the central limit theorem shows that the re-
sult, i.e. the superposition of all these modes, must be a Gaussian
random field.

• Second, it implies that the statistics of density fluctuations in the
Universe today must be explicable by the statistics of vacuum
fluctuations in a scalar quantum field. This is indeed the case. The
power spectrum resulting from this consideration is very close
to the scale-free Harrison-Zel’dovich-Peebles shape introduced in
Sect. 1.2.2,

Pδ(k) ∝ k
n , (8.23)

where n ≈ 1.

• The spectral index n would be precisely unity if inflation lasted
forever. Since this was obviously not so, n must deviate slightly
from unity, and detailed calculations show that it must be slightly
smaller,

n = 1 + 2η − 6� . (8.24)

The latest WMAP measurements do in fact show that

n = 0.963+0.014
−0.015 . (8.25)
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The completely scale-invariant spectrum, n = 1, is excluded at
2.5σ.

• The measured deviation of n from unity also restricts the number
N of e-foldings completed by inflation; a value of n = 0.963 is
consistent with 60 e-foldings.

• Another prediction of inflation is that it may excite not only
scalar, but also tensor perturbations. Scalar perturbations lead to
the density fluctuations, tensor perturbations correspond to gravi-
tational waves. Vector perturbations do not play any role because
they decay quickly as the universe expands. Inflation predicts that
the ratio r between the amplitudes of tensor and scalar perturba-
tions, taken in the limit of small wave numbers, is

r = 16� . (8.26)

• An inflationary background of gravitational waves is in principle
detectable through the polarisation of the CMB. Limits of order
r � 0.05 are expected from the upcoming Planck satellite. To-
gether with the result n � 1 from WMAP, it will then be possible
to constrain viable inflation models, i.e. to constrain the shape of
the inflaton potential.

8.2 Dark energy

8.2.1 Motivation

• The CMB shows us that the Universe is at least nearly spatially
flat. Constraints from the CMB, and from kinematics and cluster
evolution (we will discuss this later) show that the matter density
alone cannot be responsible for flattening space, and primordial
nucleosynthesis and the CMB show that baryons contribute at a
very low level only. Something is missing, and it even dominates
today’s cosmic fluid.

• From structure formation, we know that this remaining con-
stituent cannot clump on the scales covered by the galaxy surveys
and below. It is thus different from dark matter. We call it dark

energy. The type-Ia supernovae (later) tell us that it behaves at
least very similar to a cosmological constant.

• Maybe the dark energy is a cosmological constant? Nothing cur-
rently indicates any deviation from this “simplest” assumption.
So far, the cosmological constant is a perfectly viable description
for all observational evidence we have.
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• However, this is deeply unsatisfactory from the point of view of
theoretical physics. The problem is the value of ΩΛ0. As we have
seen above, a self-interacting scalar field with negligible kinetic
energy behaves like a cosmological constant. Then, its density
should simply be given by its potential V . Simple arguments sug-
gest that V should be the fourth power of the Planck mass, which
turns out to be 120 orders of magnitude larger than the cosmolog-
ical constant derived from observations. Since this fails, it seems
natural to expect that the cosmological constant should vanish,
but it does not. The main problem with the cosmological con-
stant is therefore, why is it not zero if it is so small?

• The explanation of inflation by means of an inflaton field suggests
one way out. As we have seen there, accelerated expansion can be
driven by a self-interacting scalar field while its potential energy
dominates. Moreover, it can be shown that if the potential V has
an appropriate shape, the dark energy has attractor properties in
the sense that a vast range of initial density values can evolve
towards the same value today. Such models for a dynamical dark

energy are theoretically very attractive.

8.2.2 Observational constraints?

• If the dark energy is indeed dynamical and provided by a self-
interacting scalar field, how can we find out more about it? Re-
viewing the cosmological measurements we have discussed so
far, it becomes evident that they are all derived from constraints
on

– cosmic time, as in the age of the Galaxy or of globular clus-
ters, or in primordial nucleosynthesis;

– distances, as in the spatial flatness derived from the CMB,
the type-Ia supernovae or the geometry of cosmological
weak lensing; or

– the growth of cosmic structures, as in the acoustic oscilla-
tions in the CMB, the evolution of the cluster population,
the structures in the galaxy distribution or the source of cos-
mological weak-lensing effects.

• We must therefore seek to constrain the dark energy by measure-
ments of distances, times, and structure growth. Since they can
all be traced back to the expansion behaviour of the universe as
described by the Friedmann equation, we must see how the dark
energy enters there, and what effects it can seed through it.
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• Let us therefore assume that the dark energy is a suitably self-
interacting, homogeneous scalar field. Then, its pressure can be
described by

p = w(a)ρc2 , (8.27)

where the equation-of-state parameter w is some function of a.
According to (8.15), accelerated expansion needs w < −1/3, and
the cosmological constant corresponds to w = −1. Since all cos-
mological measurements to date are in agreement with the as-
sumption of a cosmological constant, we need to arrange things
such that w→ −1 today.

• Suppose we have some function w(a), which could either be ob-
tained from a phenomenological choice, a model for the self-
interaction potential V(φ) through (8.21) or from a simple ad-hoc

parameterisation. Then, (8.18) implies

ρ̇

ρ
= −3(1 + w)

ȧ

a
, (8.28)

or

ρ(a) = ρ0 exp
�
−3
�

a

1
[1 + w(a�)]

da
�

a�

�
≡ ρ0 f (a) . (8.29)

• If w = const., this simplifies to

ρ(a) = ρ0 exp [−3(1 + w) ln a] = ρ0a
−3(1+w) . (8.30)

If w = −1, we recover the cosmological-constant case ρ = ρ0 =

const., for pressure-less material, w = 0 and ρ ∝ a
−3, and for

radiation, w = 1/3 and ρ ∝ a
−4.

• Therefore, we can take account of the dynamical dark energy
by replacing the term ΩΛ0 in the Friedmann equation (2.7) by
ΩDE0 f (a), and the expansion function E(a) turns into

E(a) =
�
Ωr0a

−4 +Ωm0a
−3 +ΩDE0 f (a) +ΩK0a

−2
�1/2
, (8.31)

where ΩK0 = 1 − Ωr0 − Ωm0 − ΩDE0 is the curvature density pa-
rameter.

• We thus see that the equation-of-state parameter enters the ex-
pansion function in integrated form. Since all cosmological ob-
servables are integrals over the expansion function, including the
growth factor D+(a) satisfying (2.19), this implies that cosmolog-
ical observables measure integrals over the integrated equation-
of-state function w(a). Needless to say, the dependence of cosmo-
logical measurements on the exact form of w(a) will be extremely
weak, which in turn implies that extremely accurate measure-
ments will be necessary for constraining the nature of the dark
energy.

Logarithmic derivatives of the
angular-diameter distance and the
growth factor with respect to the
equation-of-state parameter.
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• In order to illustrate the required accuracies, let us consider by
how much the angular-diameter distance and the growth factor
change compared to ΛCDM upon changes in w away from −1,

d ln Dang(z)
dw

,
d ln D+(z)

dw
, (8.32)

as a function of redshift z. Assuming Ωm0 = 0.3 and ΩΛ0 = 0.7,
we find typical values between −0.1 and −0.2 at most. Since
we currently expect deviations of w from −1 at most at the ∼
10% level, accurate constraints on the dark energy require relative
accuracies of distances and the growth factor at the per-cent level.

• It seems clear that all suitable cosmological information will need
to be combined in order to make any progress. In the next chap-
ters, we will study weak lensing, supernovae, and the growth of
cosmic structures as probes of dark energy. All of these are com-
plementary and powerful ways to measure and exploit the expan-
sion history and structure formation history.



Chapter 10

Cosmological Weak Lensing

10.1 Cosmological light deflection

10.1.1 Deflection angle, convergence and shear

• Gravitational lensing was mentioned two times before: first in
Sect. 3.2 as a means for measuring the Hubble constant through
the time delay caused by gravitational light deflection, and sec-
ond as a means for measuring cluster masses in Sect. 5.2.3. For
cosmology as a whole, gravitational lensing has also developed
into an increasingly important tool.

Density inhomogeneities along the
way deflect light rays.• Matter inhomogeneities deflect light. Working out this effect in

the limit that the Newtonian gravitational potential is small, Φ �
c

2 leads to the deflection angle

�α(�θ) =
2
c2

� w

0
dw�

fk(w − w�)
fk(w)

�∇⊥Φ[ fk(w�)�θ] . (10.1)

It is determined by the weighted integral over the gradient of the
Newtonian gravitational potential Φ perpendicular to the line-of-
sight into direction θ on the observer’s sky, and the weight is given
by the comoving angular-diameter distance fk(w) defined in (2.3).
The integral extends along the comoving radial distance w� along
the line-of-sight to the distance w of the source.

• Equation (10.1) can be intuitively understood. Light is deflected
due to the pull of the dimension-less Newtonian gravitational
field �∇⊥Φ/c2 perpendicular to the otherwise unperturbed line-of-
sight, and the effect is weighted by the ratio between the angular-
diameter distances from the deflecting potential to the source,
fk(w − w�), and from the observer to the source, fk(w). Thus, a
lensing mass distribution very close to the observer gives rise to
a large deflection, while a lens near the source, w� ≈ w, has very

102
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little effect. The factor of two is a relic from general relativity and
is due to space-time curvature, which is absent from Newtonian
gravity.

• It is important to realise that the deflection itself is not observable.
If all light rays emerging from a source would be deflected by
the same angle on their way to the observer, no noticeable effect
would remain. What is important, therefore, is not the deflection
angle itself, but its change from one light ray to the next. This is
quantified by the derivative of the deflection angle with respect to
the direction �θ,

∂αi

∂θ j

=
2
c2

� w

0
dw�

fk(w − w�) fk(w�)
fk(w)

∂2Φ

∂xi∂x j

[ fk(w�)�θ] . (10.2)

The additional factor fk(w�) in the weight function arises because
the derivative of the potential is taken with respect to comoving
coordinates xi rather than the angular components θi.

• Obviously, the complete weight function

W(w�, w) ≡ fk(w − w�) fk(w�)
fk(w)

(10.3)

vanishes at the observer, w� = 0, and at the source, w� = w, and
peaks approximately half-way in between.

• For applications of gravitational lensing, it is important to dis-
tinguish between the trace-free part of the matrix (10.2) and its
trace,

tr
∂αi

∂θ j

=
2
c2

� w

0
dw�W(w�, w)

∂2Φ

∂x2
i

[ fk(w�)�θ] , (10.4)

where the sum over i is implied. Therefore, the derivatives of Φ
can be combined to the two-dimensional Laplacian, which can
then be replaced by the three-dimensional Laplacian because the
derivatives along the line-of-sight do not contribute to the integral
(10.4). Thus, we find

tr
∂αi

∂θ j

=
2
c2

� w

0
dw�W(w�, w)∆Φ . (10.5)

• Next, we can use Poisson’s equation to replace the Laplacian ofΦ
by the density. In fact, we have to take into account that light de-
flection is caused by density perturbations, and that we need the
Laplacian in terms of comoving rather than physical coordinates.
Thus,

1
a2∆Φ = 4πGρ̄δ , (10.6)
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where δ is the density contrast and

ρ̄ = ρ̄0a
−3 = ρcrΩm0 =

3H
2
0

8πG
Ωm0a

−3 (10.7)

is the mean matter density.

• Thus, Poisson’s equation reads

∆Φ =
3
2

H
2
0Ωm0

δ

a
, (10.8)

and (10.5) becomes

tr
∂αi

∂θ j

=
3H

2
0Ωm0

c2

� w

0
dw�W(w�, w)

δ

a
≡ 2κ , (10.9)

where we have introduced the (effective) convergence κ.
The gravitational tidal field (shear)
of large-scale structures distorts the
images of background galaxies (ex-
aggerated).

• The trace-free part of the matrix (10.2) is

∂αi

∂θ j

− 1
2
δi jtr
∂αi

∂θ j

=
∂αi

∂θ j

− δi jκ ≡
�
γ1 γ2

γ2 −γ1

�
, (10.10)

which defines the so-called shear components γi. Specifically,

γ1 =
1
c2

� w

0
dw�W(w�, w)

�
∂2Φ

∂x2
1
− ∂

2Φ

∂x2
2

�
,

γ2 =
2
c2

� w

0
dw�W(w�, w)

�
∂2Φ

∂x1∂x2

�
. (10.11)

• Combining the results, we can write the matrix of deflection-
angle derivatives as

∂αi

∂θ j

=

�
κ + γ1 γ2

γ2 κ − γ1

�
. (10.12)

This matrix contains the important information on how an im-
age is magnified and distorted. In the limit of weak gravitational
lensing, the size of a lensed image is changed by the relative mag-
nification

δµ = 2κ , (10.13)

while the image distortion is given by the shear components.

• In fact, an originally circular source with radius r will appear as
an ellipse with major and minor axes

a =
r

1 − κ − γ , b =
r

1 − κ + γ , (10.14)

where γ ≡ (γ2
1 + γ

2
2)1/2. The ellipticity of the observed image of a

circular source thus provides an estimate for the shear,

� ≡ a − b

a + b
=
γ

1 − κ ≈ γ . (10.15)
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10.1.2 Power spectra

• Of course, the exact light deflection expected along a particular
line-of-sight cannot be predicted because the mass distribution
along that light path is unknown. However, we can predict the
statistical properties of weak lensing from those of the density-
perturbation field.

• We are thus led to the following problem: Suppose the power
spectrum P(k) of a Gaussian random density-perturbation field δ
is known, what is the power spectrum of any weighted projection
of δ along the line-of-sight?

• The answer is given by Limber’s equation. Suppose the weight
function is q(w) and the projection is

g(�θ) =
� w

0
dw� q(w�)δ[ fk(w�)�θ] . (10.16)

If q(w) is smooth compared to δ, i.e. if the weight function
changes on scales much larger than typical scales in the density
contrast, then the power spectrum of g is

Pg(l) =
� w

0
dw�

q
2(w�)

f
2
k

(w�)
P

�
l

fk(w�)

�
, (10.17)

where �l is a two-dimensional wave vector which is the Fourier
conjugate variable to the two-dimensional position �θ on the sky.

• Strictly speaking, Fourier transforms are inappropriate because
the sky is not an infinite, two-dimensional plane. The appropri-
ate set of orthonormal base functions are the spherical harmonics
instead. However, lensing effects are usually observed in areas
whose solid angle is very small compared to the full sky. If this is
so, the survey area can be approximated by a section of the local
tangential plane to the sky, and then Fourier transforms can be
used. This is the so-called flat-sky approximation.

• Equation (10.9) is clearly of the form (10.16) with the weight
function

q(w�) =
3
2
Ωm0

H
2
0

c2

W(w�, w)
a

, (10.18)

thus the power spectrum of the convergence is, according to Lim-
ber’s equation,

Pκ(l) =
9Ω2

m0

4
H

4
0

c4

� w

0
dw� W̄2(w�, w) P

�
l

fk(w�)

�
, (10.19)

with a new weight function

W̄(w�, w) ≡ W(w�, w)
a fk(w�)

. (10.20)
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• While it is generally difficult or impossible to observe the differ-
ential magnification δµ or the convergence κ, image distortions
can in principle be measured. With a brief excursion through
Fourier space, it can easily be shown that the power spectrum
of the shear is exactly identical to that of the convergence,

Pγ(l) = Pκ(l) . (10.21)

Thus, the statistics of the image distortions caused by cosmologi-
cal weak lensing contains integral information on the power spec-
trum of the matter fluctuations.

The power spectrum of the weak-
lensing convergence κ for three dif-
ferent source redshifts.

• Since the shear is defined on the two-dimensional sphere (the ob-
server’s sky), its power spectrum is related to its correlation func-
tion ξγ through the two-dimensional Fourier transform

ξγ(φ) =
�

d2
l

(2π)2 Pγ(l)ei�φ�l =

� ∞

0

ldl

2π
Pγ(l)J0(lφ) , (10.22)

where Jν is the ordinary Bessel function of order ν.

10.1.3 Correlation functions

• In principle, shear correlation functions are measured by com-
paring the ellipticity of one galaxy with the ellipticity of other
galaxies at an angular distance φ from the first.

• Ellipticities are oriented, of course, and one has to specify against
what other direction the direction of, say, the major axis of a given
ellipse is to be compared to. Since correlation functions are mea-
sured by counting pairs, a preferred direction is defined by the
line connecting the two galaxies of the pair under consideration.

• Let α be the angle between this direction and the major axis of
the ellipse, then the tangential and cross components of the shear
are defined by

γ+ ≡ γ cos 2α , γ× ≡ γ sin 2α . (10.23)

The factor two is important because it accounts for the fact that
an ellipse is mapped onto itself when rotated by an angle π. This
illustrates that the shear is a spin-2 field: It returns into its original
orientation when rotated by π rather than 2π.

• The correlation functions of the tangential and cross components
of the shear are

ξ++(φ) = �γ+(θ)γ+(θ + φ)� =
1
2

� ∞

0

ldl

2π
Pκ(l)

�
J0(lφ) + J4(lφ)

�

(10.24)
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and

ξ××(φ) = �γ×(θ)γ×(θ + φ)� =
1
2

� ∞

0

ldl

2π
Pκ(l)

�
J0(lφ) − J4(lφ)

�
,

(10.25)
while the cross-correlation between the tangential and cross com-
ponents must vanish,

ξ+×(φ) = 0 . (10.26)

The convergence (or shear) corre-
lation function for three different
source redshifts.

• This suggests to define the correlation functions ξ± = ξ++ ± ξ××,
which are related to the power spectrum through

ξ+ =

� ∞

0

ldl

2π
Pκ(l)J0(lφ) ,

ξ− =

� ∞

0

ldl

2π
Pκ(l)J4(lφ) . (10.27)

• Yet another measure for cosmological weak lensing is given by
the absolute value of the shear averaged within a circular mask
(or aperture) of radius θ,

γ̄(θ) ≡
� θ

0

d2ϑ

πθ2
γ(�ϑ) , (10.28)

which is related to the power spectrum by

�|γ̄(θ)|2� =
� ∞

0

ldl

2π
Pκ(l)

�
2J1(lθ)

lθ

�2
. (10.29)

The power of cosmological weak
lensing as a function of angular
scale.

• The principle of all these measures for cosmic shear is the same:
They are integrals of the weak-lensing power spectrum times so-
called filter functions which describe the detailed response of the
measurement to the underlying power spectrum of density fluc-
tuations. The width of the filter functions controls the range of
density-perturbation modes �k that contribute to one specific mode
�l of weak-lensing on the sky.

• We can now estimate typical numbers for the cosmological weak-
lensing effect. The power ∆κ in the weak-lensing quantities such
as the cosmic shear is given by the power spectrum Pκ(l) found in
(10.19), times the volume in l-space,

∆κ(l) = l
2
Pκ(l) . (10.30)

• Assuming a cosmological model with Ωm0 = 0.3 and ΩΛ0 = 0.7,
the CDM power spectrum and a reasonable source redshift dis-
tribution, ∆κ(l)1/2 is found to peak on scales l corresponding to
angular scales 2π/l of 2� . . . 3�, and the peak reaches values of
0.04 . . . 0.05. This shows that cosmological weak lensing will
typically cause source ellipticities of a few per cent, and they have
a typical angular scale of a few arc minutes. Details depend on
the measure chosen through the filter function.



CHAPTER 10. COSMOLOGICAL WEAK LENSING 108

10.2 Cosmic-shear measurements

10.2.1 Typical scales and requirements

• How can cosmic gravitational lensing effects be measured? As
shown in (10.15), the ellipticity of a hypothetic circular source
is a direct measure, a so-called unbiased estimator for the shear.
But typical sources are not circular, but to first approximation el-
liptical themselves. Thus, measuring their ellipticities yields their
intrinsic ellipticities in the first place.

• Let �(s) be the intrinsic source ellipticity. It is a two-component
quantity because an ellipse needs two parameters to be described
(e.g. an axis ratio and an orientation), and it is a spin-2 quantity
because it is mapped onto itself upon a rotation by 2π/2 = π.
The cosmic shear adds to that ellipticity, such that the observed
ellipticity is

� ≈ �(s) + γ (10.31)
in the weak-lensing approximation. What is observed is therefore
the sum of the signal, γ, and the intrinsic noise component �(s).

• On sufficiently deep observations, some 30 galaxies per square
arc minute are detected. Since the full moon has half a degree
diameter, it covers a solid angle of 152π = 700 square arc minutes,
or 21, 000 of such distant, faint galaxies! From this point of view,
the sky is covered by densely patterned “wall paper” of distant
galaxies.

• Thus, it is possible to average observed galaxy ellipticities. As-
suming their shapes are intrinsically independent, the intrinsic el-
lipticities will average out, and the shear will remain,

��� ≈ ��(s)� + �γ� ≈ �γ� . (10.32)

• It is a fortunate coincidence that the typical angular scale of cos-
mic lensing, which we found to be of order a few arc minutes, is
large compared to the mean distance between background galax-
ies, which is of order

√
1/30 ≈ 0.2�. This allows averaging over

background galaxies without cancelling the cosmic shear signal.
If γ varied on scales comparable to or smaller than the mean
galaxy separation, any average over galaxies would remove the
lensing signal.

• The intrinsic ellipticities of the faint background galaxies have
a distribution with a standard deviation of σ� ≈ 0.3. Averaging
over N of them, and assuming Poisson statistics, gives expecta-
tion values of

��(s)� = 0 , δ� = �(�(s))2�1/2 = σ�√
N

(10.33)
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for the mean and its intrinsic fluctuation.

• A rough estimate for the signal-to-noise ratio of a cosmic shear
measurement can proceed as follows. Suppose the correlation
function ξ is measured by counting pairs of galaxies with a sepa-
ration within δθ of θ. As long as θ is small compared to the side
length of the survey area A, the number of pairs will be

Np =
1
2

2πn2
Aθδθ , (10.34)

and thus the Poisson noise due to the intrinsic ellipticities will be

noise ≈ 2σ�
n

√
πAθδθ

, (10.35)

where the factor of two arises because of the two galaxies in-
volved in each pair.

• The signal is the square root of the correlation function ξ, which
we can approximate as

ξ ≈ l
2
Pκ(l)δ ln l ≈ l

2
Pκ(l)
δl

l
≈ l

2
Pκ(l)
δθ

θ
, (10.36)

where we have used in the last step that θ = 2π/l.
The estimated signal-to-noise ratio
of weak-lensing measurements for
a hypothetical survey on an area of
one square degree.

• Thus, the signal-to-noise ratio turns out to be

S

N
≈
√
ξ

noise
≈ lnδθ

√
πAPκ

2σ�
=

n

�
π3APκ

σ�

δθ

θ
. (10.37)

Evidently, the signal-to-noise ratio, and thus the significance of
any cosmic-lensing detection, grows with the survey area and de-
creases with the intrinsic ellipticity of the source galaxies.

• In evaluating (10.37) numerically, we have to take into account
that l

2
Pκ(l) must be a dimension-less number, which implies that

the power spectrum Pκ must have the dimension steradian. There-
fore, either the survey area A and the number density n in (10.37)
must be converted to steradians, or Pκ must be converted to square
arc minutes first.

• The signal-to-noise ratio increases approximately linearly with
scale. Assuming δθ/θ = 0.1, it is S/N ≈ 1.5 on a scale of 0.1� for
a survey of one square degree area. This shows that, if the cosmic
shear should be measured on such small scales with an accuracy
of, say, five per cent, a survey area of A ≈ (20/1.5)2 ≈ 180 square
degrees is needed since the signal-to-noise ratio scales like the
square root of the survey area. On such an area, the ellipticities
of 180 × 3600 × 30 ≈ 2 × 107 background galaxies have to be
accurately measured.
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• Matters are more complicated in reality, but the orders-of-
magnitude are well represented by this rough estimate. Bear-
ing in mind that typical fields-of-view of telescopes which are
large enough to detect sufficiently many faint background galax-
ies reach one to ten per cent of a square degree, and that typical
exposure times are of order half an hour for that purpose, the total
amount of telescope time for a weak-lensing survey like that is
estimated to be several thousand telescope hours. With perhaps
eight hours of telescope time per night, and perhaps half of the
nights per year usable, it is easy to see that the time needed for
such surveys is measured in years.

• Since the faint background galaxies have typical sizes of arc sec-
onds, shape measurements require a pixel resolution of, say, 0.1��.
The total survey area of 180 square degrees must therefore be
resolved into 180 × 3600 × 3600/0.12 ≈ 2.3 × 1011 pixels. Stor-
ing only one 4-byte number per pixel (i.e. the photon count), this
amounts to 4.6 × 1011/240 = 0.8 TBytes.

10.2.2 Ellipticity measurements

The sobering appearance of real
data.

• The determination of image ellipticities is straightforward in prin-
ciple, but difficult in practice. Usually, the surface-brightness
quadrupole

Qi j =

�
I(�x)xix jd2

x
�

I(�x)d2x

(10.38)

is measured, from whose principal axes the ellipticity can be read
off.

• Real galaxy images, however, are typically far from ideally ellip-
tical. They are structured or otherwise irregular. In addition, if
they are small, they are coarsely resolved into just a few pixels,
so that only a crude approximation to the integral in (10.38) can
be found.

The compatibility of the lower data
points signals the almost complete
absence of systematic effects in the
data show above.

• Even if the surface-brightness quadrupole of the image on the
detector can be accurately determined, the image appears affected
by imperfections of the telescope optics and by the turbulence in
the atmosphere, the so-called seeing.

• Due to the wave nature of light and the finite size of the telescope
mirror, the telescope will have finite resolution. The angular res-
olution limit is given by

∆θ ≈ 1.44
λ

D
(10.39)
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as mentioned in (7.41) before. With λ ≈ 6 × 10−5 cm and D =

400 cm, the angular resolution is ∆θ ≈ 0.04��, much smaller than
needed for our purposes.

• The turbulence of the Earth’s atmosphere effectively convolves
images with a Gaussian whose width depends on the site, the
weather and other conditions. Typical seeing ranges around 1��.
Under very good conditions, it can shrink to ∼ 0.5�� or less.
Clearly, if an image of approximately one arc second size is con-
volved with a Gaussian of similar width, any ellipticity is sub-
stantially reduced.

The point-spread function of the
Canada-France-Hawaii telescope.

• How the image of a point-like source, such as a star, appears
on the detector is described by the so-called point-spread func-

tion (PSF). The PSF may be anisotropic if the telescope optics
is slightly astigmatic, and this anisotropy may, and will in gen-
eral, depend on the location on the focal plane. The image is a
convolution of the ideal image shape before any distortion by the
atmosphere and the telescope optics and the PSF. Any accurate
measurement of image ellipticities requires a PSF deconvolution,
for which the PSF must of course be known. It is measured by
fitting elliptical Gaussians to stellar images on the exposure.

Illustration of systematic image dis-
tortions in the CFHTLS and their
correction.

• Many other effects may distort images in systematic ways. For
instance, if the CCD chips are not exactly perpendicular to the
optical axis of the telescope, or if the individual chips of a CCD
mosaic are not exactly in the same plane, or if the telescope is
slightly out of focus, systematic image deformations may result
which typically vary across the focal plane. They have to be mea-
sured and corrected. This is commonly achieved by fitting the
parameters of a model PSF to a low-order, two-dimensional poly-
nomial on the focal plane. Since part of the image distortions
may depend on time due to thermal deformation, changing atmo-
spheric conditions and such, PSF corrections will also typically
depend on time and have to be determined and applied with much
care.

E- and B-mode distortion patterns.

• Systematic effects may remain which need to be detected and
quantified. Any coherent image distortions caused by gravita-
tional lensing must be describable by the tidal gravitational field,
i.e. by second-order derivatives of a scalar potential. In analogy
to the �E-field in electromagnetism, such distortion patterns are
called E-modes. Similarly, distortion patterns which are the curl
of a vector field are called B-modes. They cannot be due to grav-
itational lensing and thus signal systematic effects remaining in
the data. Such B-mode contaminations could recently be strongly
reduced or suppressed by improved algorithms for PSF correc-
tion.
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10.2.3 Results

The first published measurements
of the cosmic-shear correlation
function.

• Despite the smallness of the effect and the many difficulties in
measuring it, much progress in cosmic-shear observations has
been achieved in the past few years. Current and ongoing sur-
veys, in particular the Canada-France-Hawaii Legacy Survey,
combined with well-developed, largely automatic data-analysis
pipelines, have managed to produce cosmic-shear correlation
functions with very small error bars covering angular scales from
below an arc minute to several degrees. The best correlation func-
tions could be shown to be at most negligibly contaminated by
B-modes.

The CFHT dome (top) and the
Mega-Prime Camera in its prime fo-
cus (bottom).

• The power spectrum Pκ(l) depends crucially on the non-linear
evolution of the dark-matter power spectrum. This, and the ex-
act redshift distribution of the background galaxies, are the major
uncertainties now remaining in the interpretation of cosmic-shear
surveys. Apart from that, the measured cosmic-shear correlation
functions agree very well with the theoretical expectation from
CDM density fluctuations in a spatially-flat, low-density universe.

• As (10.19) shows, the weak-lensing power spectrum Pκ(l) de-
pends on the product of a factor Ω2

m0 due to the Poisson equation,
times the amplitude A of the matter power spectrum. An addi-
tional weak dependence on cosmological parameters is caused
by the geometric weight function W̄(w�, w), but this is not very
important. By and large, therefore, the cosmic-shear correlation
function measures the product AΩ2

m0, which means that the ampli-
tude of the power spectrum is (almost) precisely degenerate with
the matter density parameter. Only if it is possible to constrain
Ωm0 or A in any other way can the degeneracy be broken.

• We shall see later how this may work. The amplitude of the power
spectrum A is conventionally described by a parameter σ2

8 which
will be defined and described in more detail later. Weak lensing
thus measures the product σ8Ωm0, and current measurements find
σ8Ωm0 ≈ 0.2.

• Weak gravitational lensing is a fairly new field of cosmological
research. Within a few years, it has considerably matured and re-
turned cosmologically interesting constraints. Considerable po-
tential is expected from weak lensing in wide-area surveys in par-
ticular when combined with photometric redshift information.
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Figure 10.1: Recent constraints in the Ωm0 − σ8 plane obtained from
weak-lensing measurements. The Universe is assumed spatially flat
here.



Chapter 11

The Normalisation of the Power
Spectrum

11.1 Introduction

• We saw in Chapter 9 that the measured power spectrum of the
galaxy distribution follows the CDM expectation in the range
of wave numbers where current large surveys allow it to be de-
termined. This range can be extended to some degree towards
smaller scales by measuring the autocorrelation of hydrogen ab-
sorption lines in the spectra of distant quasars. Such observations
of the power spectrum of the so-called Lyman-α forest lines show
that the power spectrum does indeed turn towards the asymptotic
behaviour ∝ k

−4. In addition, we have seen that the peak loca-
tion agrees with the expectation for universe with Ωm0 ≈ 0.3 and
h ≈ 0.72. This indicates that the CDM expectation for the dark-
matter power spectrum is indeed at least very close to its real
shape, which is a remarkable success.

• Although the shape of the power spectrum could thus be quite
well established, its amplitude still poses a surprisingly obstinate
problem. We shall see in this section why it is so difficult to mea-
sure. For this purpose, we shall discuss three ways of measuring
σ8; the amplitude of large-scale temperature fluctuations in the
CMB, the cosmic-shear autocorrelation function, and the abun-
dance and evolution of the galaxy-cluster population.

• For historical reasons, the amplitude of the dark-matter power
spectrum is characterised by the density-fluctuation variance
within spheres of 8 h

−1Mpc radius. This is because in the first
measurement of the fluctuation amplitude in the galaxy distribu-
tion, Davis & Peebles found that it reached unity in such spheres.

• More generally, one imagines randomly placing spheres of radius

114



CHAPTER 11. THE NORMALISATION OF THE POWER SPECTRUM115

R and measuring the density-contrast variance within them. Since
the variance in Fourier space is characterised by the power spec-
trum, it can be written as

σ2
R
=

� ∞

0

d3
k

(2π)3 Pδ(k)W2
R
(k) , (11.1)

where WR(k) is a window function selecting the k modes con-
tributing to the variance.

• Imagining spheres of radius R in real space, the window function
should be the Fourier transform of a step function, which is, how-
ever, inconvenient because it extends to infinite wave numbers. It
is thus more common to use either Gaussians, since they Fourier
transform into Gaussians, or step functions in Fourier space. For
simplicity of the illustrative calculations that will follow, we use
the latter choice, thus

WR(k) = Θ(kR − k) = Θ
�
2π
R
− k

�
. (11.2)

This is a step function dropping to zero for k > 2π/R.

• Inserting this into (11.1), we find

σ2
R
=

� 2π/R

0

k
2dk

2π2 Pδ(k) . (11.3)

In other words, all modes larger than R contribute to the density
fluctuations in spheres of radius R because all smaller modes av-
erage to zero.

• The normalisation of the power spectrum is usually expressed in
terms of σ8.

11.2 Fluctuations in the CMB

11.2.1 The large-scale fluctuation amplitude

• We saw in Chapter 6 that the long-wavelength (low-k) tail of the
CMB power spectrum is caused by the Sachs-Wolfe effect, giving
rise to relative temperature fluctuations of

δT

T
≡ τ = Φ

3c2 (11.4)

in terms of the Newtonian potential fluctuations Φ; see also
Eq. (7.22).
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• The three-dimensional temperature-fluctuation power spectrum is
then

Pτ(k) =
1

9c4 PΦ(k) . (11.5)

The Poisson equation in its form (10.8) implies that the power
spectra of potential- and density fluctuations are related through

PΦ(k) =
9H

4
0

3
Ω2

m0

�
D+(a)

a

�2
Pδ(k)

k4 , (11.6)

where the linear growth factor D+(a) was introduced to relate the
potential-fluctuation power spectrum at the time of decoupling to
the present density-fluctuation power spectrum Pδ(k).

• Now, we need to account for projection effects. A three-
dimensional mode with wave number k and wavelength λ = 2π/k
appears under an angle θ = λ/D, where D is the angular-diameter
distance to the CMB. We saw in (7.29) that

D ≈ 2ca

H0
√
Ωm0

∝ 1
H0
√
Ωm0

(11.7)

to first order inΩm0. Thus, the angular wave number under which
the mode appears is

l ≈ 2π
θ
≈ Dk . (11.8)

• Expressing now the power spectrum (11.5) in terms of the angu-

lar wave number l yields

Pτ(l) ∝
�
H0

c

�4
Ω2

m0

�
D+(a)

a

�2 1
D2

D
4

l4 Pδ

�
l

D

�
, (11.9)

where the factor D
−2 arises because of the transformation from

spatial to angular wave numbers l, and the factor D
4/l4 expresses

the factor k
−4 from the squared Laplacian.

• Let us now insert a highly simplified model for the power spec-
trum,

Pδ(k) = A




k
n (k < k0)

k
n−4 else

. (11.10)

Inserting its long-wave limit, Pδ(k) = Ak
n, into (11.9) yields

Pτ(l) ∝ A

�
H0

c

�4
Ω2

m0

�
D+(a)

a

�2 1
D2

�
D

l

�4−n

. (11.11)

• This shows that the temperature-fluctuation power spectrum de-
pends on the cosmological parameters in various subtle ways;
through the Poisson equation, the projection, the angular-
diameter distance, the growth factor and the power-spectrum ex-
ponent n.
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• Taking all dependences on H0 and Ωm0 into account shows that
the amplitude A of the dark-matter power spectrum depends on
the cosmological parameters through

A ∝ Ω−1−n/2
m0 h

−2−n

�
D+(a)

a

�−2

Pτ(l) . (11.12)

In other words, the measured power Pτ(l) in the CMB tempera-
ture fluctuations can only be translated into the amplitude of the
dark-matter power spectrum A if the cosmological parameters are
known well enough.

11.2.2 Translation to σ8

• Regarding σ8, we are not done yet. Inserting the model power
spectrum (11.10) into the definition (11.3) gives

σ2
8 =

A

2π2




k
n+3
0

n + 3
+




k
n−1
8

n−1 −
k

n−1
0

n−1 (n � 1)
ln k8

k0
(n = 1)


 , (11.13)

where k8 = 2π/(8 h
−1Mpc).

The translation of the CMB temper-
ature fluctuations depends on cos-
mological parameters, e.g. on Ωm0.

• Since n ≈ 1, the second term is close to logarithmic and thus
weakly dependent on the cosmological parameters in k0. Then,
we see by combining (11.13) with (11.12) that

σ8 ∝ Ω1+n/4
m0 h

2+n/2 D+(a)
a
. (11.14)

Note that this is an approximate result which is meant to illus-
trate the principle. It shows that a measurement of the tempera-
ture fluctuations in the CMB can only be translated into σ8 if the
matter-density parameter, the Hubble constant, the growth factor
and the shape of the power spectrum are accurately known.

• Of course, one could also use the small-scale part of the CMB
power spectrum for normalising the dark-matter power spectrum.
Due to the acoustic oscillations, however, this part depends in a
much more complicated way on additional cosmological param-
eters, such as the baryon density. Reading σ8 off the low-order
multipoles is thus a safer procedure.

• Even if the cosmological parameters are now known well enough
to translate the low-order CMB multipoles to σ8, an additional
uncertainty remains. We know that, although the Universe be-
came neutral ∼ 400, 000 years after the Big Bang, it must have
been reionised after the first stars and other sources of UV radi-
ation formed. Since then, CMB photons are travelling through
ionised material again and experience Thomson (or Compton)
scattering.
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• The optical depth for Thomson scattering is

τ =

�
dx neσT , (11.15)

where ne is the number density of free electrons and σT is the
Thomson scattering cross section. After propagating through the
optical depth τ, the CMB fluctuation amplitude is reduced by
exp(−τ).

• Of course, the CMB photons cannot disappear through Thom-
son scattering, thus its overall intensity cannot be changed in this
way, but the fluctuation amplitudes are lowered in this diffusion
process.

• The optical depth τ depends on the path length through ionised
material. In view of the CMB, this means that the degree of fluc-
tuation damping depends on the reionisation redshift, i.e. the red-
shift after which the cosmic baryons were transformed back into
a plasma. Unless the reionisation redshift is known, we cannot
know by how much the CMB fluctuations were suppressed.

• So far, the reionisation redshift can be estimated in two ways.
First, as discussed in Sect. 6.2.4, Thomson scattering creates lin-
ear polarisation. Of course, the polarisation due to reionised ma-
terial appears superposed on the primordial polarisation, but on
different angular scales. The characteristic scale for secondary

polarisation is the horizon size at the reionisation redshift, which
is much larger than the typical scales of the primordial polarisa-
tion. Thus, the reionisation redshift can be inferred from large-
scale features in the CMB polarisation, provided the cosmologi-
cal parameters are known well enough to translate angular scales
into physical scales.

• Unfortunately, this is aggravated by the polarised microwave ra-
diation from the Milky Way. Synchrotron and dust emission can
be substantially polarised and mask the CMB polarisation, which
can only be measured reliably if the foregrounds of Galactic ori-
gin can be accurately subtracted. Thus, the degree to which the
foreground polarisation is known directly determines the accu-
racy of the σ8 parameter derived from the CMB fluctuations. This
is the main reason for a considerable remaining uncertainty in
the σ8 derived from the 3-year WMAP data given in the table in
Sect. 6.2.7.

• The other way to constrain the reionisation redshift uses the spec-
tra of distant quasars. Light with wavelengths shorter than the
Lyman-α wavelength cannot propagate through neutral hydrogen
because it is immediately absorbed. Therefore, quasar spectra
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released before the reionisation redshift must be completely ab-
sorbed blueward of the Lyman-α emission line. The appearance
of this so-called Gunn-Peterson effect at high redshift thus signals
the transition from ionised into neutral material. Using this tech-
nique, the reionisation redshift was found to be ∼ 6.5 . . . 7, which
now agrees well with the estimates from the secondary polarisa-
tion of the CMB.

11.3 Cosmological weak lensing

• Compared to the outlined procedure to obtain σ8 from the
CMB, it appears completely straightforward to derive it from the
cosmic-shear measurements. As we have seen in (10.19), the
cosmic-shear power spectrum is proportional to Ω2

m0 times the
amplitude A of the dark-matter power spectrum, which leads to
the approximate degeneracy Ωm0σ8 ≈ const. between σ8 and the
matter-density parameter Ωm0.

• A more subtle dependence on Ωm0 and to some degree also on
other cosmological parameters is introduced by the geometrical
weight function W̄(w�, w) shown in (10.20), and by the growth of
the power spectrum along the line-of-sight. This slightly modifies
the form of the σ8-Ωm0 degeneracy, but does not lift it.

• However, knowing Ωm0 well enough, we should be able to read
σ8 off the cosmic-shear correlation function. However, there are
three problems associated with that.

• First, the cosmic shear measured on angular scales below ∼ 10� is
heavily influenced by the onset of non-linear structure growth and
the effect this has on the dark-matter power spectrum. While the
linear growth factor can be straightforwardly calculated analyti-
cally, non-linear growth can only be quantified by means of large
numerical simulations and recipes derived from them. Insuffi-
cient knowledge of the non-linear dark-matter power spectrum is
a major uncertainty in the cosmological interpretation of cosmic
shear.

• Second, the amplitude of cosmological weak-lensing effects de-
pends on the redshift distribution of the sources used for mea-
suring ellipticities. Since these background galaxies are typically
very faint, it is demanding to measure their redshifts. Two meth-
ods have typically been used. One adapts the known redshift dis-
tribution of sources in small, very deep observations such as the
Hubble Deep Field to the characteristics of the observation to be
analysed. The other relies on photometric redshifts, i.e. redshift
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estimates based on multi-band photometry. Yet, the precise red-
shift distribution of the background sources adds additional un-
certainty to estimates of σ8.

• Third, it is possible that systematic effects remain in weak-lensing
measurements because the effect is so small, and many correc-
tions have to be applied to measured ellipticities before the cos-
mic shear can be extracted. Advanced correction methods have
been developed which made the B-mode contamination almost
or completely disappear. This is good news, but it does not yet
guarantee the absence of other systematic effects in the data.

• Still, cosmic lensing, combined with estimates of the matter-
density parameter, is perhaps the most promising method for
precisely determining σ8. Table 11.1 lists values of σ8 derived
from some cosmic-shear measurements under the assumption of
Ωm0 = 0.3 in a spatially-flat universe.

σ8 data reference
0.86+0.09

−0.13 RCS Hoekstra et al. 2002
0.71+0.12

−0.16 CTIO Jarvis et al. 2003
0.72 ± 0.09 Combo-17 Brown et al. 2003
0.97 ± 0.13 Keck-II Bacon et al. 2003
1.02 ± 0.16 HST/STIS Rhodes et al. 2004
0.83 ± 0.07 Virmos-Descart van Waerbeke et al. 2005
0.68 ± 0.13 GEMS Heymans et al. 2005
0.85 ± 0.06 CFHTLS Hoekstra et al. 2006

Table 11.1: Values for σ8 derived from cosmic-shear measurements un-
der the assumption of a spatially-flat universe with Ωm0 = 0.3.

11.4 Galaxy clusters

11.4.1 The mass function

• Based on the assumption that the density contrast is a Gaussian
random field and the spherical-collapse model, Press & Schechter
in 1974 derived a mass function for dark-matter halos. It com-
pares the standard deviation σR of the density-fluctuation field to
the linear density-contrast threshold δc ≈ 1.686 for collapse in the
spherical-collapse model. The mean mass contained in spheres of
radius R sets the halo mass, which brings the mean (dark-) matter
density ρ̄ into the game.
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• The standard deviation σR is related to the power spectrum. For
convenience, we introduce an effective slope

n =
d ln P(k)

d ln k
(11.16)

for the power spectrum, which will of course be scale-dependent.
On large scales, n ≈ 1, while n → −3 on small scales, i.e. for
small halo masses. For galaxy clusters, n ≈ −1.

• We introduce the non-linear mass scale M∗ as the mass contained
in spheres of radius R such that σR = 1. Since σR grows with
the linear growth factor D+(a), the non-linear mass grows with
time. It is convenient here to express the amplitude of the power
spectrum, and thus σ8, in terms of M∗. It is straightforward to
show that

σR =
�

M∗
M

�α
, (11.17)

with
α ≡ 1

2

�
1 +

n

3

�
. (11.18)

• In terms of the dimensionless mass m ≡ M/M∗, the Press-
Schechter mass function can then be written in the form

N(m, a)dm =

�
2
π

ρ̄δc

M2
∗D+(a)

αm
α−2 exp

�
− δ2

c

2D
2
+(a)

m
2α
�

dm .

(11.19)

The X-ray flux (top) or luminosity
functions of galaxy clusters can be
converted to a mass function if it is
possible to measure cluster masses
sufficiently accurately.

• The Press-Schechter mass function, and some improved variants
of it, have been spectacularly confirmed by numerical simula-
tions. It shows that the mass function is a power law with an
exponential cut-off near the non-linear mass scale M∗. For galaxy
clusters, n ≈ −1, thus α ≈ 1/3, and

N(m, a)dm ∝ m
−5/3 exp

�
− δ2

c

2D
2
+(a)

m
2/3
�

dm , (11.20)

with an amplitude characterised by M∗, the mean dark-matter
density ρ̄, and the growth factor D+(a).

• This opens a way to constrain cosmological parameters as well
as σ8 with galaxy clusters: if the abundance and evolution of the
cluster mass function can be measured, they can be determined
from the mass scale of the exponential cut-off and the amplitude
of the power-law end. Today, the non-linear mass scale is a few
times 1013

M⊙. Therefore, the exponential cut-off in the halo mass
will not be seen in the galaxy mass function. Clusters, however,
show the exponential cut-off very well, and thus their popula-
tion is very sensitive to changes in σ8. In principle, therefore,
σ8 should be very well constrained by the cluster population.
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11.4.2 What is a cluster’s mass?

• The main problem here is how observable cluster properties
should be related to quantities used in theory. Strictly speaking,
the cluster mass, as used in the theoretical mass function (11.20),
is not an observable. Global cluster observables are the X-ray
temperature and flux, the optical luminosity and the velocity dis-
tribution of their galaxies, and their gravitational-lensing effects.
Before we discuss their relation to mass, let us first see what the
“mass of a galaxy cluster” could be.

• It is easy to define masses of gravitationally bound, well localised
objects, such as planets or stars. They have a well-defined bound-
ary, e.g. the planetary surfaces or the stellar photospheres. This
is markedly different for objects like galaxies and galaxy clusters.
As far as we know, their densities drop smoothly towards zero
like power laws, ∝ r

−(2...3). Thus, although they are gravitation-
ally bound, it is less obvious what should be seen as their outer
boundary. Strictly speaking, there is none.

• The only way out is then to define an outer boundary in such a way
that it is well-defined in theory and identifiable in observational
data. A common choice was introduced in Sect. 5.1.2: it defines
the boundary by the mean overdensity it encloses. Although this
is problematic as well, it may be as good as it gets. Three im-
mdiately obvious problems created by this definition are that ob-
jects like galaxy clusters are often irregularly shaped rather than
spherical, that the overdensity of 200 is quite arbitrary, even if it
is inspired by virial equilibrium in the spherical-collapse model,
and that its measurement requires a sufficiently accurate density
profile to be known or assumed.

• How could standardised radii such as R200 be measured? This
could for instance be achieved applying equations such as (6.33)
after measuring the slope β and the core radius of the X-ray sur-
face brightness profile together with the X-ray temperature, by
calibrating an assumed density profile with galaxy kinematics
based on the virial theorem, or by constraining the cluster mass
profile with gravitational lensing.

• Obviously, all these measurements have their own problems. Be-
ing sensitive to all mass along the line-of-sight, gravitational lens-
ing cannot distinguish between mass bound to a cluster or just
projected onto it. Any measurement based on the virial theo-
rem must of course rely on virial equilibrium, which takes time
to be established and is often perturbed in real clusters because
of merging and accretion. The common interpretation of X-ray
measurements requires the assumption that the X-ray gas be in
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hydrostatic equilibrium with the host cluster’s gravitational po-
tential.

• This illustrates that it may be fair to say that there is no such thing

as the mass of a galaxy cluster. Even if measurements of clus-
ter “radii” were less dubious, it remained unclear whether they
mean the same as those assumed in theory, which are related to
the spherical-collapse model. Interestingly, but not surprisingly,
cluster masses obtained from numerical simulations suffer from
the same poor definition of the concept of a “cluster radius”.

• How can we make progress then? Observables such as the clus-
ter temperature TX or its X-ray luminosity LX should be related
to the depth of the gravitational-potential well they are embed-
ded in, which should in turn be related to some measure of the
total mass. If we can calibrate such expected temperature-mass
or luminosity-mass relations, e.g. using numerical simulations of
galaxy clusters, a direct comparison between theory and observa-
tions seems possible. This is sometimes called an external cali-

bration of the required relations.

• Internal calibrations, i.e. calibrations based on cluster data alone,
have become increasingly fashionable over the past years. Here,
empirical temperature-mass and luminosity-mass relations are
obtained based on one or more estimates of the mass estimates
sketched above.

σ8 data reference
1.02 ± 0.07 M-T relation Pierpaoli et al. 2001
0.77 ± 0.07 M-T relation Seljak 2002
0.75 ± 0.16 lensing masses Smith et al. 2003
0.79+0.06

−0.07 luminosity function Pierpaoli et al. 2003
0.77+0.05

−0.04 temperature function Pierpaoli et al. 2003
0.69 ± 0.03 lensing masses Allen et al. 2003
0.78 ± 0.17 optical richness Eke et al. 2006
0.67+0.04

−0.05 lensing masses Dahle 2006

Table 11.2: Values of σ8 derived from the galaxy-cluster population
based on different observational data.

Several recent determinations ofσ8.
• The result of both procedures is qualitatively the same. It allows

the conversion of observables to mass, and thus of the observed
cluster temperature or luminosity functions to mass functions,
which can then compared to theory. The shape and amplitude
of the power spectrum and the growth factor can then be adapted
to optimise the agreement between observed and expected mass
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functions. Clusters at moderate or high redshift constrain the evo-
lution of the mass function and allow an independent estimate of
the matter-density parameter Ωm0, as sketched in Sect. 5.3 before.

• In view of the many difficulties listed, it is an astonishing fact
that, when applied not to cluster samples rather than individual
clusters, the determination of the cluster mass function and its
evolution seems to work very well. Values for σ8 derived there-
from are given in Tab. 11.2.
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