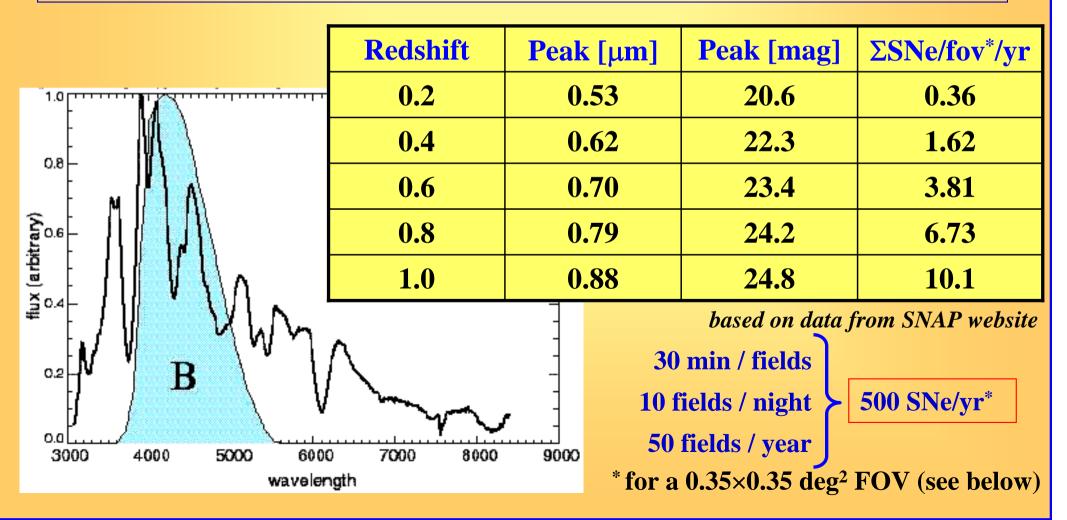
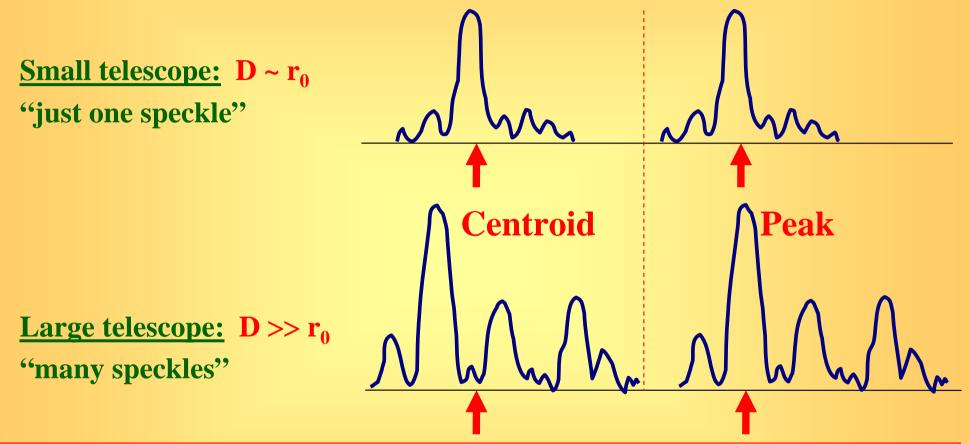
SUNSET – the SUperNovae SEarch Telescope

Idea: Provide quasi-diffraction limited resolution with high point source sensitivity over half a square degree on the sky


-> Ideal to detect e.g., supernovae in large area surveys.

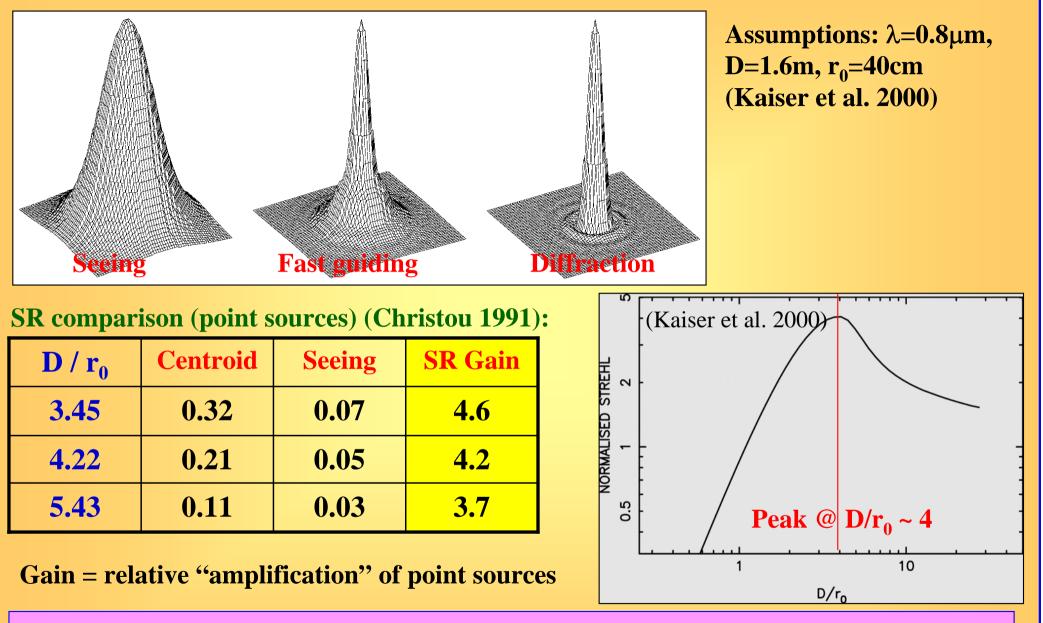
No such ground-based telescope or technical solution exists yet!

Scientific Motivation


Would enable a wealth of complementary scientific projects:

- Time resolved (~50Hz) imaging surveys of transient phenomena
- Searches for moving targets (asteroids, ...)
- Targets that require high resolution (small gravitational lenses, ...)
- Supernova searches (less than 100 SNe evaluated so far!)

Speckles and Tip-Tilt


- Speckles contain diffraction limited information of the source
- 87% of the power lies in the tip-tilt term alone (Noll 1976)

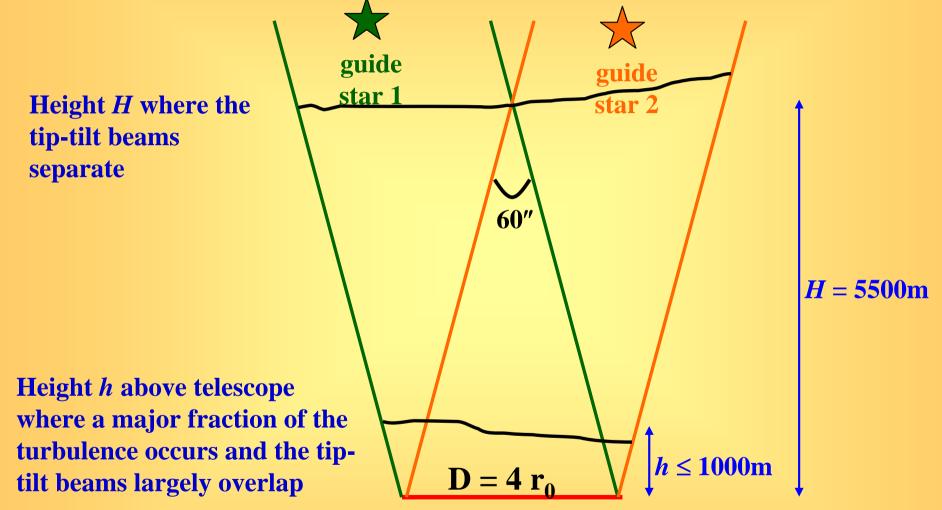
• **Centroid tracking requires:** quad-cell detector (only possible option here!)

- Peak tracking requires: Nyquist sampled tracking of speckle pattern
- If $D/r_0 = 4 \rightarrow (2 \times 4)^2$ pixels are needed, (64 vs. 4) \rightarrow guide star 16 × brighter!

Tip-Tilt Improvement for D/ r_0 < 10

Gain ~ 4 means: same S/N as from a seeing limited telescope $\frac{4 \times bigger}{D}$ in diameter since S/N \propto D/source (BLIP)

Turbulence, Telescope and Pixel Size



Mean $r_0 \sim 0.35m$ @ I-band \rightarrow telescope diameter $\sim 4r_0 = 1.4 m$

→ A small 1.4m telescope could provide the same S/N to point sources than a 6m telescope but over a much wider field-of-view!


The Basic Idea I: "The simplest case of MCAO"

Consider two different tip-tilt "beams" (i.e. columns of tip-tilt corrected atmosphere) about 60" apart; each one containing a reference star.

Now "assemble" a large FOV from many adjacent tip-tilt beams. The tilt-isoplanatic patch (here 60" across) replaces the turbulence cell (r_0) in conventional AO "thinking". For correction use a system similar to a conventional AO system.

The Basic Idea II

→ The deformable mirror (DM) must be conjugated to the height H

→ Each element of the DM now corrects only tip-tilt but over the full telescope aperture (rather than over a small fraction of the pupil).

→ In addition, a tiptilt secondary mirror conjugated to height *h* can take out a large fraction of the tilt that applies to all beams.

Why not do "it" in the Focal Plane?

- **1.** Read short frames and "shift-and-add" → read noise
- 2. OTAs → charge transfer noise, cosmetic imperfections (flat fielding), limited to specific FPA arrays, ...
- 3. New generation of IR arrays → too expensive (~25M\$)

Our proposed approach allows a much more general use of the focal plane:

- -Visitor instruments
- -Spectroscopy

-Narrowband filters

-FPA configuration not coupled to scales of turbulence

-IR detectors (non-CCD)

-Quickly respond to new FPA devices → better performance

-Cheaper FPA detectors

Implications for DMs and WFSs

Working assumption: corrected field of view ~ $0.35 \times 0.35 \text{ deg}^2$

□ needs $\geq 21 \times 21$ control elements to cover the entire field

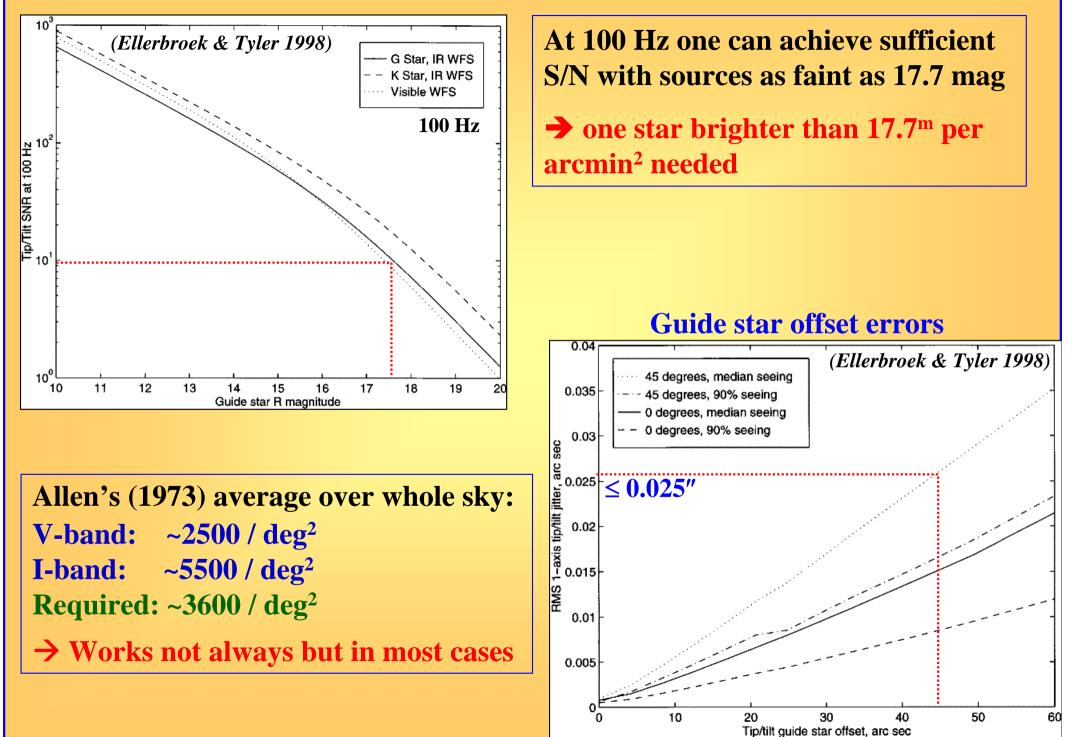
□ that's about 500 deformable mirror elements (commercially available)

\Box each element requires a maximum stroke of $15 - 20\mu m$ (not yet possible with commercial continuous face sheet devices)

are segmented MEMS DMs a good alternative?

□ WFS chip needs only 21 × 21 "quad cells", BUT: location of tip-tilt reference stars not a priori known and variable from field to field

□ WFS chip needs to cover entire FOV, not just the center of each "beam"


using a 0.25" /pixel scale for centroiding one would need a 5k × 5k CCD

□ low read noise WFS chips are ≤ 512×512 pixels and ~50–100Hz

 $\Box \rightarrow$ more sophisticated methods needed:

- a fish eye lens sampled with a large lenslet array
- a micro-mirror array to steer the selected star onto subaperture
- using multiple reference stars, some of which fall onto pixel boundaries

Reference Stars: Magnitudes, Densities, Errors

Focal Plane and Science Camera

1.4m telescope @ I-band: $\theta_{PSF} \sim 0.15''$

→ 0.1"/pixel scale (compromise)

→ 12k × 12k detector array needed

I-band sensitive CCDs with optimized AR coating and "deep depletion" → Marconi CCD44-82: 2048 × 4096 pixels, 15µm, BIP

To cover 0.35 × 0.35 deg² 18 CCDs (\$75,000) are needed → total ~ 1.35 M\$

2k * 4k	2k * 4k	2k * 4k	1
2k * 4k	2k * 4k	2k * 4k	
2k * 4k	2k * 4k	2k * 4k	
2k * 4k	2k * 4k	2k * 4k	0.35°
2k * 4k	2k * 4k	2k * 4k	
2k * 4k	2k * 4k	2k * 4k	
0.35° 1 mm gaps between CCDs			

<u>Wavelength advantages:</u> short λ (0.5µm) vs. long λ (0.9 µm)

WFS	<u>SciCam</u>
cheaper commercial CCDs	cheaper commercial CCDs
higher DQE	lower sky background
no "sharing" of γs with SciCam	larger $\mathbf{r}_0 \rightarrow \mathbf{larger} \ \mathbf{D} \rightarrow \mathbf{smaller} \ \theta_{\min}$
larger sky coverage (SC)	larger $r_0 \rightarrow$ larger $D \rightarrow$ better S/N
lower bandwidth → better S/N & SC	objects at higher redshift

Basic Observing Procedure

- 1. Point anywhere on the sky within 45° from zenith
- 2. Take a deep WFS exposure
- 3. Select suitable guide stars on WFS chip (compromise between S/N and sky coverage)
- 4. Locate quad-cells around each guide star used for tracking
- 5. Start algorithm that uses:

automated

possibly automated

- i. all guide stars to control tip-tilt secondary
- ii. individual guide stars to control the DM
- 6. Close tip-tilt loops (i.) and (ii.)
- 7. Start science exposures
- 8. Go to next *n* fields starting at item 1.
- **9.** Reobserve same fields after *X* hours (nights)

Open Issues

- 1. DM technology: continuous face sheets vs. segmented MEMS DMs
- 2. WFS optics non-trivial
- 3. Large (1k × 1k), fast (\geq 100Hz) and low readnoise (\leq 5e⁻) WFS chips
- 4. Operating wavelengths of WFS and SciCam
- 5. Complicated control algorithm to:
 - locate suitable reference stars
 - combine info from adjacent beams
 - reject bleeding from bright stars in FOV
- 6. Guide star density may not always be sufficient
- 7. Variable seeing leads to variable PSF shape and sensitivity

Cost Estimate:

For a 0.35 × 0.35 deg² system: \$7.5M

Telescope and enclosure	no cost, but
Secondary mirror modifications	\$0.3M
Science Camera CCDs	\$1.4M
Science Camera – other	\$0.8M
Wavefront sensor chip(s)	\$1.0M
WFS camera optics	\$1.5M
Deformable mirror	\$0.3M
Design study, modeling	\$0.4M
Software development	\$1.5M
Computer hardware	\$0.3M

Summary

- This telescope would enable <u>diffraction limited</u> searches for point sources with <u>high sensitivity</u> (6m class) over a <u>large FOV</u>, currently impossible from the ground with any other instrument.
- For "only a couple of bucks" this telescope could complement vastly more expensive space missions
- The concept is expandable:
 - **o One unique instrument with** $0.5^{\circ} \times 0.5^{\circ}$ **FOV for** \leq **\$10M**
 - **o Downsized technology demonstrator for a fraction of the price**
 - o A "network" of such telescopes, operated by Universities