ARTEMIS A Revolutionary TEchnique for Mid-Infrared Surveys

Idea: Spectral chopping enables large-area line-surveys from a medium-sized telescope in an extremely efficient manner.

Important scientific niche not covered by any existing instrument.

Problems of Ground-based MIR Observations

Mid-IR astronomy from the ground is limited:

- poor atmospheric transmission
- high thermal background
- → Space.

However, space missions are

- expensive, and have
- poor spatial resolution.

Where targets are sufficiently bright large ground-based telescope are advantageous. BUT: faced with additional shortcomings:

- 1. <u>Low efficiency</u> (~10%) of MIR observations due to the large overhead involved in chopping, nodding and calibrations.
- 2. <u>Accurate background subtraction</u> requires a flat, nearby "sky" for chopping – problematic for multiple sources and extended targets (often impossible for dense Galactic regions)

The Conventional Principle

(Variable) Background >> Source flux → chopping at 5-10 Hz between program target and a nearby reference field.

With T = source + background, B = background, 1,2 = nod positions, S = source ((one chop sequence of multiple co-added images)) :

$$S = ((T_1 - B_1)) - ((B_2 - T_2))$$

This technique requires:

- **1.** a representative patch of nearby sky exists
- 2. the telescope (secondary chopping and telescope nodding) performs accurately over an extended period in time
- 3. the beams from both nod-positions are well aligned.

The ARTEMIS Principle

ARTEMIS will not chop in the *spatial* but in the *spectral* domain. ARTEMIS will always:

- point on-target
- require no time-consuming telescope re-pointings
- require no secondary mirror moves.

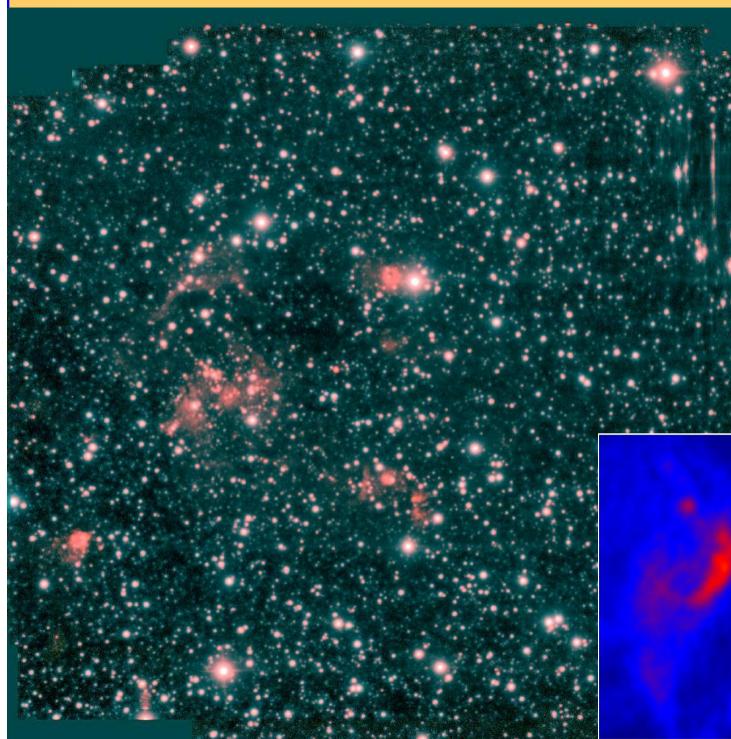
With T_1 = total flux at λ_1 , T_0 = flux at $\lambda_0 = \lambda_1 - \Delta \lambda$, T_2 = flux at $\lambda_2 = \lambda_1 + \Delta \lambda$, and $\alpha \approx \beta \approx 1.0$ are "fine-tuning" parameters:

$$S = \left(\left(T_1 - \frac{\alpha T_0 + \beta T_2}{\alpha + \beta} \right) \right)$$

Why "fine-tuning" parameters?

Background flux B_{λ} is not a linear function with wavelength:

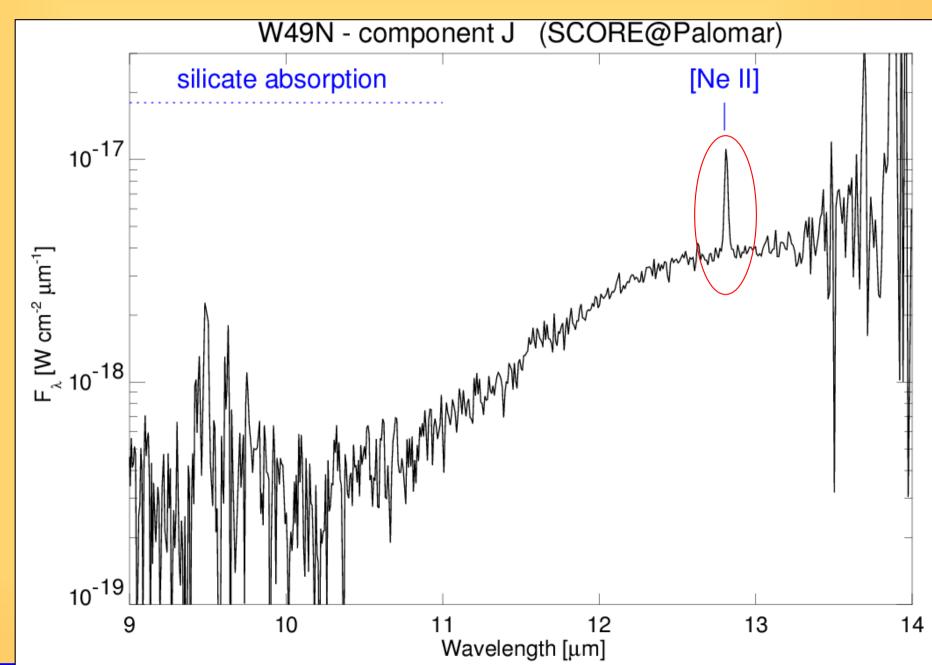
$$B_{\lambda} = \frac{2hc^2}{\lambda^5} \left[\frac{\varepsilon}{e^{\frac{hc}{\lambda kT}} - 1} \right]$$

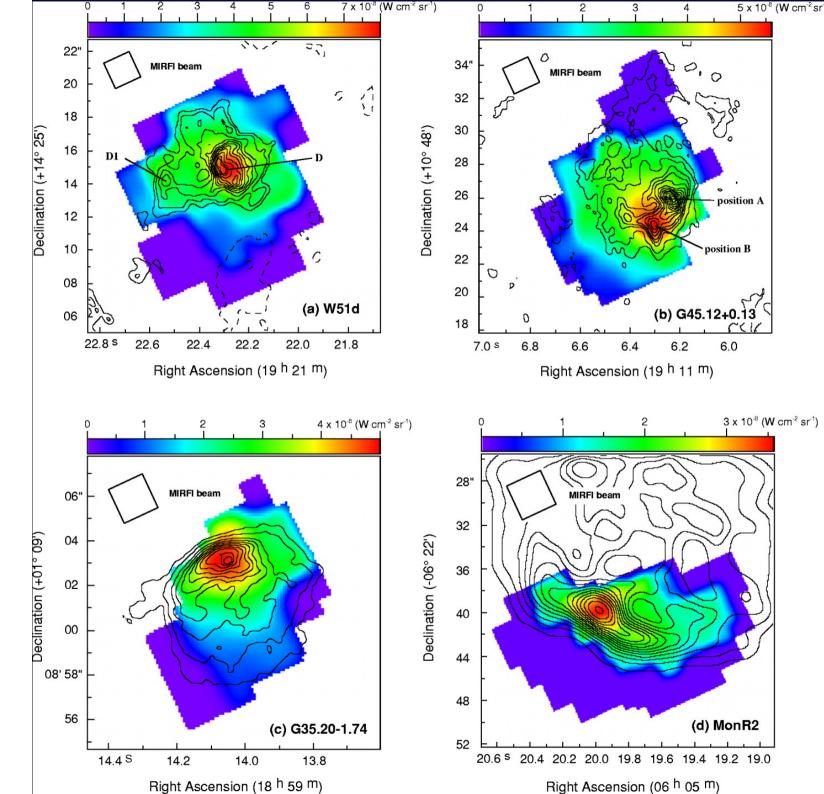

 $\rightarrow \Delta \lambda$ has to be sufficiently small, i.e., λ_0 , λ_1 , and λ_2 have to be very close to each other and require the use of narrow-band filters.

Standard narrowband imaging uses: "line filter" + "continuum filter" for: target + sky (=independent to disentangled background from source continuum flux).

BUT: T = B + S and $B >> S \rightarrow T \approx B$. The missing degree of freedom can be recovered by selecting:

- $\Box \bullet$ the fine-tune parameters α and β
- $\Box \bullet$ the continuum wavelengths λ_0 and λ_2


Why a mid-IR emission line?

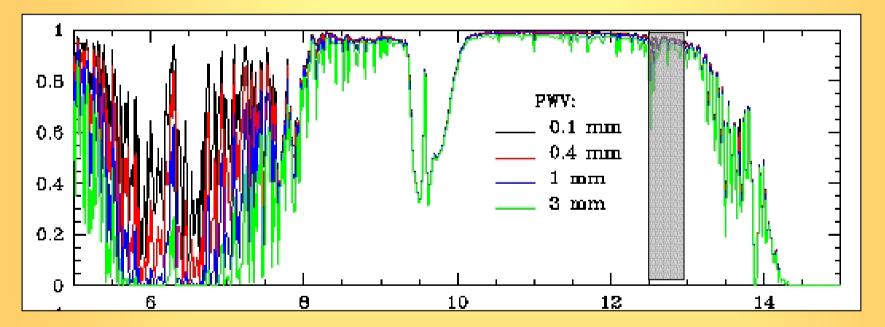


W49N with WIRC@Palomar

Why a mid-IR emission line?

W49N with WIRC@Palomar

←Other examples of [Ne II] (12.8 µm) imaging

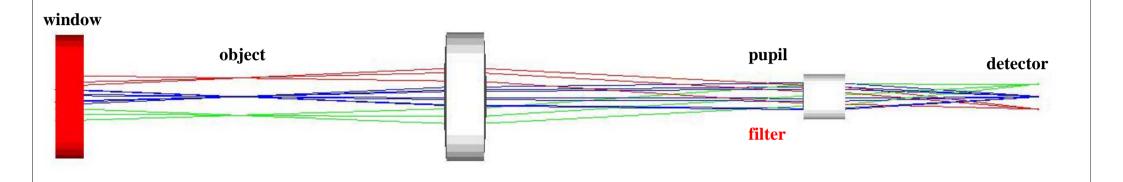

[Nell] is the strongest MIR fine structure line in most Galactic (UC)HII regions

Operating Wavelengths

Goal: high resolution

Resolution of R = 100 $\rightarrow \Delta \lambda$ = 0.128µm

"Chopping" by $\Delta\lambda$ to each side covers 12.6µm $\leq \lambda \leq$ 13.0µm.



Atmospheric transmission [= $f(\lambda)$] for different amounts of precipitable water vapor; the filter coverage is the gray-shaded area.

Camera Design

A simple example:

Camera for the ESO-NTT (3.5m), based on two lenses:

Total length (window-detector)	347mm
Image size at detector	25.6mm
Pupil diameter	9.4mm
Beam divergence at pupil	10.3deg

Very simple and compact design

→ light, easily calibratable, low maintenance, cheap!

...and very efficient!!!

"Mono"-chromatic wavelength

optimized coatings and very few optical elements

→ high throughput

➔ high efficiency

PSF FWHM @ 12.7 μ m: 0.73" \rightarrow 0.4" / pixel sampling With new 1024 × 1024 array (JWST) \rightarrow 6.8' × 6.8' FOV With 10 minute/position \rightarrow 1 degree² within one night!!! \rightarrow A powerful spectral mapping machine!

The Filter

Optimal background + continuum subtraction & wavelength selection

Custom-made linear variable filter (LVF) or circular variable filter (CVF)

All wavelengths use the same physical device \rightarrow changes in transmission and spectral width should be minimal.

The filter will be located in a mechanism that slides back and forth (LVF) or that rotates in and out (CVF) perpendicular to the beam.

Spectral "chopping" ~ 10 Hz: 80ms integration time + 20ms filter move.

Germanium substrate of $60 \times 15 \times 3$ mm³ ~ 14.5 grams only. Moving the filter by one resolution element (~20mm) in 20ms would require an acceleration of 100m/s or 10g - no problem!

The Spectral Resolution

The spectral resolution is limited by:

<u>1. The beam divergence</u>. For rays that transmit the filter at different angles a shift in wavelength occurs:

$$\lambda_{g} = \lambda_{0} \sqrt{1 - \left(\frac{\sin g}{n_{e}}\right)^{2}}$$

For $n_e = 4$ (Germanium) $\lambda_9 / \lambda_0 = 0.999 \rightarrow R \le 500$.

2. The pupil diameter.

Required that the LVF/CVF changes wavelengths by less than half a resolution element over the pupil diameter.

For R = 100 $\rightarrow \Delta \lambda$ = 0.064µm over 9.4mm (prelim. design).

To cover 12.6 μ m $\leq \lambda \leq$ 13.0 μ m the size of the filter must be 58.8mm.

Summary: requirements look feasible, and Lagrange invariant $A \times \Omega$ does not limit the resolution in this concept.

Observing Procedure

- 1. Point to a nearby target, known NOT to have emission or absorption at [Ne II].
- 2. Adjust the parameters α and β and the continuum wavelengths λ_0 and λ_2 until the best elimination of *both* sky background and continuum source flux is achieved. (Can be automated in software.)
- **3. Go to the program target and start observing.**
- 4. Mapping can be done as easily as for optical imaging.
- 5. The computer will monitor the efficiency of the sky subtraction in a median-filtered portion of the image and remind the observer if readjustment of α and β became necessary.
- 6. Images can be co-added and maps can be constructed in real-time. The success of the observations will immediately be known, and not only after a lengthy data reduction process.

SUMMARY: ARTEMIS is an efficient, cheap, and simple instrument that fills an important niche currently not covered by any other instrument. It would be a mistake not to build it ...!